LEADER 05557nam 2200673 a 450 001 9910452336103321 005 20200520144314.0 010 $a1-299-46258-8 010 $a981-4434-71-X 035 $a(CKB)2550000001019243 035 $a(EBL)1168138 035 $a(OCoLC)840491992 035 $a(SSID)ssj0000860988 035 $a(PQKBManifestationID)11464855 035 $a(PQKBTitleCode)TC0000860988 035 $a(PQKBWorkID)10915083 035 $a(PQKB)10969939 035 $a(MiAaPQ)EBC1168138 035 $a(WSP)00002980 035 $a(Au-PeEL)EBL1168138 035 $a(CaPaEBR)ebr10691922 035 $a(CaONFJC)MIL477508 035 $a(EXLCZ)992550000001019243 100 $a20130416d2013 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 00$aScanning probe microscopy for energy research$b[electronic resource] /$feditors, Dawn A. Bonnell, Sergei V. Kalinin 210 $a[Hackensack] N.J. $cWorld Scientific$dc2013 215 $a1 online resource (619 p.) 225 1 $aWorld scientific series in nanoscience and nanotechnology,$x2301-301X ;$vv. 7 300 $aDescription based upon print version of record. 311 $a981-4434-70-1 320 $aIncludes bibliographical references and index. 327 $aPreface; CONTENTS; List of Color Plates; Introduction; Chapter 1 Local Probes in the Next Decade of Energy Research: Bridging Macroscopic and Atomic Worlds D. A. Bonnell and S. V. Kalinin; 1. The Energy Challenge; 2. The Need for Local Characterization; 3. Science and Technology of Renewable and Sustainable Options; 3.1. Solar cells and photo voltaic devices; Fuel cells; Batteries; 4. Frontiers of Scanning Probe Microscopy; 4.1. Probing local electrical properties; 4.2. Probing local dielectric properties; 4.3. Probing local electrochemical properties 327 $a4.4. Future impact of SPM in energy research Acknowledgments; References; I. Scanning Probes for Energy Harvesting Systems: Photovoltaics and Solar Cells; Chapter 2 Electrical Scanning Probe Microscopy on Solar Cell Materials R. Giridharagopal, G. E. Rayermann and D. S. Ginger; 1. Introduction; 2. Conducting Atomic Force Microscopy (cAFM); 3. Photoconductive Atomic Force Microscopy (pcAFM); 4. AC-Mode AFM; 5. Electrostatic Force Microscopy (EFM); 6. Scanning Kelvin Probe Microscopy (SKPM); 7. Time-Resolved Electrostatic Force Microscopy (trEFM); 8. Conclusions and Future Outlook 327 $aAcknowledgments References; Chapter 3 Organic Solar Cell Materials and Devices Characterized by Conductive and Photoconductive Atomic Force Microscopy X.-D. Dang, M. Guide and T.-Q. Nguyen; 1. Introduction; 2. Basic Operation of Organic Solar Cells; 3. Fundamental Principles of Conductive and Photoconductive AFM; 3.1. Conductive atomic force microscopy; 3.2. Photoconductive atomic force microscopy; 3.3. pc-AFM devices versus bulk solar cell devices; 4. Applications of c-AFM and pc-AFM for Characterization of Organic Solar Cell Materials and Devices 327 $a4.1. Local conductivity variation and charge transport 4.2. Probing internal structure of photoactive layers; 4.3. Assigning phase separation in BHJ organic solar cells; 4.4. Local incident photon conversion efficiency; 4.5. Origin of open-circuit voltage of organic solar cells; 5. Summary and Outlook; Acknowledgments; References; Chapter 4 Kelvin Probe Force Microscopy for Solar Cell Applications T. Glatzel; 1. Introduction; 2. Experimental Technique and Working Modes; 2.1. The Kelvin Principle; 2.2. Technical realization; 3. Application to Solar Cells 327 $a3.1. Cu(In, Ga)(S, Se)2 based solar cells 3.1.1. Surface properties; 3.1.2. Grain boundaries; 3.1.3. Surface photovoltage analysis; 3.1.4. Interface properties; 3.2. Organic solar cells; 3.2.1. Polymer/fullerene solar cells; 3.2.2. Dye-sensitized solar cells; References; Chapter 5 Reversible Rectification in Sub-Monolayer Molecular P-N Junctions: Towards Nanoscale Photovoltaic Studies J. A. Smerdon, N. C. Giebink and J. R. Guest; 1. Introduction; 2. Transport in a D-A HJ at the Molecular Scale; 3. Ultrahigh Vacuum Scanning Tunneling Microscopy and Spectroscopy 327 $a4. Promise and Challenges of Laser-Assisted STM 330 $aEfficiency and life time of solar cells, energy and power density of the batteries, and costs of the fuel cells alike cannot be improved unless the complex electronic, optoelectronic, and ionic mechanisms underpinning operation of these materials and devices are understood on the nanometer level of individual defects. Only by probing these phenomena locally can we hope to link materials structure and functionality, thus opening pathway for predictive modeling and synthesis. While structures of these materials are now accessible on length scales from macroscopic to atomic, their functionality h 410 0$aWorld Scientific series in nanoscience and nanotechnology ;$vv. 7. 606 $aElectric batteries$xResearch 606 $aScanning probe microscopy$xIndustrial applications 608 $aElectronic books. 615 0$aElectric batteries$xResearch. 615 0$aScanning probe microscopy$xIndustrial applications. 676 $a621.31/2028 701 $aBonnell$b Dawn A$0928618 701 $aKalinin$b Sergei V$0928619 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910452336103321 996 $aScanning probe microscopy for energy research$92087022 997 $aUNINA