LEADER 05384nam 2200673Ia 450 001 9910452301103321 005 20200520144314.0 010 $a1-299-46212-X 010 $a1-84816-812-8 035 $a(CKB)2550000001019205 035 $a(EBL)1168133 035 $a(OCoLC)841913823 035 $a(SSID)ssj0000908487 035 $a(PQKBManifestationID)12440029 035 $a(PQKBTitleCode)TC0000908487 035 $a(PQKBWorkID)10901588 035 $a(PQKB)10588503 035 $a(MiAaPQ)EBC1168133 035 $a(WSP)00002952 035 $a(Au-PeEL)EBL1168133 035 $a(CaPaEBR)ebr10699265 035 $a(CaONFJC)MIL477462 035 $a(EXLCZ)992550000001019205 100 $a20130123d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 00$aQuantum gases$b[electronic resource] $efinite temperature and non-equilibrium dynamics /$feditors, Nick Proukakis ... [et al.] 210 $aLondon $cImperial College Press ;$aSingapore $cDistributed by World Scientific$dc2013 215 $a1 online resource (579 p.) 225 0 $aCold Atoms,$x2045-9734 ;$v1 300 $aDescription based upon print version of record. 311 $a1-84816-810-1 320 $aIncludes bibliographical references (p. 461-537) and indexes. 327 $aPreface; Foreword; Participants of FINESS 2009 (Durham); Contents; Common Symbols/Expressions and their Meanings; Part I. Introductory Material; Editorial Notes; I.A. Quantum Gases: The Background; 1. Quantum Gases: Setting the Scene N.P. Proukakis & K. Burnett; 1.1. Introduction: Background to Quantum Fluids and Gases; 1.2. History of Non-Equilibrium and Finite-Temperature Pure BEC Experiments; 1.2.1. The Search for Idealised Systems: Spin-Polarised Hydrogen; 1.2.2. The Twist to an Unlikely Candidate: The Scene Opens up for Alkali Atoms; 1.2.3. Rival Candidates Gaining Ground? 327 $a1.3. Modelling Quantum Degenerate Gases1.3.1. The Success of Phenomenology; 1.3.2. Ab Initio Modelling; 1.3.2.1. The Gross-Pitaevskii Equation; 1.3.2.2. Generalised Kinetic Theories; 1.3.3. Classical-Field and Stochastic Approaches; 1.3.4. Modelling Related Systems; 1.4. Unified Features of Quantum Gases; 1.4.1. Non-Equilibrium BECs and the Thermal Phase Transition; 1.4.2. Thermal and Quantum Fluctuations; 1.4.3. Quantum Phase Transitions and Disorder; 1.4.4. The Superfluid Fraction, its Relation to the Condensate and the Issue of Fragmentation; 1.4.5. Strongly Correlated Physics 327 $a1.4.6. Ultracold Fermions1.4.7. Potential Applications; 1.4.8. Other Systems Exhibiting Condensation; Acknowledgements; I.B. Quantum Gases: Experimental Considerations; 2. Ultracold Quantum Gases: Experiments with Many-Body Systems in Controlled Environments P. Kruger; 2.1. Introduction; 2.2. Condensate Formation and Growth; 2.3. Excitations of Bose-Einstein Condensates; 2.4. Strongly Correlated and Phase-Fluctuating Systems; 2.4.1. Feshbach Resonances; 2.4.2. Optical Lattices; 2.4.3. Low-Dimensional Systems; Acknowledgements 327 $a3. Ultracold Quantum Gases: Key Experimental Techniques S.A. Hopkins & S.L. Cornish3.1. Introduction; 3.2. Basic Experimental Techniques; 3.2.1. Overview; 3.2.2. Laser Cooling and Trapping of Atoms; 3.2.3. Magnetic Traps; 3.2.4. Dipole Traps; 3.2.5. Evaporative (and Sympathetic) Cooling; 3.2.6. Feshbach Resonances; 3.2.7. Manipulation and Visualisation; 3.2.8. Cold Molecules; 3.3. High-Level Techniques; 3.3.1. Interferometry; 3.3.2. Optical Lattices; 3.3.3. Rotation, Vortices, and Phase Imprinting; 3.3.4. Microtraps (or 'Atom Chips'); 3.3.5. Matter-Wave Lasers (or 'Atom Lasers') 327 $a3.4. New Tools and Topical Areas3.5. Summary and Outlook; Acknowledgements; I.C. Quantum Gases: Background Key Theoretical Notions; 4. Introduction to Theoretical Modelling M.J. Davis, S.A. Gardiner, T.M. Hanna, N. Nygaard, N.P. Proukakis & M.H. Szymanska; 4.1. Introduction; 4.2. Second Quantisation; 4.3. Effective Interactions; 4.4. Broken Symmetry Versus Number Conservation; 4.5. Fluctuations and Degeneracy in Low Dimensions; 4.6. Periodic Potentials ('Optical Lattices'); 4.7. Fermionic Issues; 4.8. Feshbach Resonances; 4.9. Summary; Acknowledgements 327 $aPart II. Ultracold Bosonic Gases: Theoretical Modelling 330 $aThe 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems.This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap 410 0$aCold Atoms 606 $aCold gases 606 $aQuantum theory 608 $aElectronic books. 615 0$aCold gases. 615 0$aQuantum theory. 676 $a530.4/74 676 $a539 701 $aProukakis$b Nick$0942828 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910452301103321 996 $aQuantum gases$92127591 997 $aUNINA