LEADER 03652nam 22006612 450 001 9910452090003321 005 20151005020622.0 010 $a1-107-18521-1 010 $a1-281-15366-4 010 $a9786611153663 010 $a1-139-13345-4 010 $a0-511-35537-8 010 $a0-511-35487-8 010 $a0-511-35429-0 010 $a0-511-54275-5 010 $a0-511-35589-0 035 $a(CKB)1000000000481100 035 $a(EBL)321355 035 $a(OCoLC)190643124 035 $a(SSID)ssj0000148159 035 $a(PQKBManifestationID)11150859 035 $a(PQKBTitleCode)TC0000148159 035 $a(PQKBWorkID)10225018 035 $a(PQKB)11639858 035 $a(UkCbUP)CR9780511542756 035 $a(MiAaPQ)EBC321355 035 $a(Au-PeEL)EBL321355 035 $a(CaPaEBR)ebr10209487 035 $a(CaONFJC)MIL115366 035 $a(EXLCZ)991000000000481100 100 $a20090505d2007|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aEnumeration of finite groups /$fSimon R. Blackburn, Peter M. Neumann, Geetha Venkataraman$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2007. 215 $a1 online resource (xii, 281 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v173 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-88217-6 320 $aIncludes bibliographical references and index. 327 $aSome basic observations -- Preliminaries -- Enumerating p-groups: a lower bound -- Enumerating p-groups: upper bounds -- Some more preliminaries -- Group extensions and cohomology -- Some representation theory -- Primitive soluble linear groups -- The orders of groups -- Conjugacy classes of maximal soluble subgroups of symmetric groups -- Enumeration of finite groups with abelian Sylow subgroups -- Maximal soluble linear groups -- Conjugacy classes of maximal soluble subgroups of the general linear groups -- Pyber's theorem: the soluble case -- Pyber's theorem: the general case -- Enumeration within varieties of abelian groups -- Enumeration within small varieties of A-groups -- Enumeration within small varieties of p-groups. 330 $aHow many groups of order n are there? This is a natural question for anyone studying group theory, and this Tract provides an exhaustive and up-to-date account of research into this question spanning almost fifty years. The authors presuppose an undergraduate knowledge of group theory, up to and including Sylow's Theorems, a little knowledge of how a group may be presented by generators and relations, a very little representation theory from the perspective of module theory, and a very little cohomology theory - but most of the basics are expounded here and the book is more or less self-contained. Although it is principally devoted to a connected exposition of an agreeable theory, the book does also contain some material that has not hitherto been published. It is designed to be used as a graduate text but also as a handbook for established research workers in group theory. 410 0$aCambridge tracts in mathematics ;$v173. 606 $aFinite groups 615 0$aFinite groups. 676 $a512.23 700 $aBlackburn$b Simon R.$01026697 702 $aNeumann$b P. M. 702 $aVenkataraman$b Geetha 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910452090003321 996 $aEnumeration of finite groups$92441752 997 $aUNINA LEADER 01220nam a2200277 4500 001 991003572629707536 008 181119s2017 it a 000 0 ita d 020 $a9788808320964 035 $ab14353659-39ule_inst 040 $aBibl. Dip.le Aggr. DiSTeBA - Sez. Biologia$beng 082 0 $a660.6$223 100 1 $aBrown, Terence Austen$076063 245 10$aBiotecnologie molecolari : $bprincipi e tecniche /$cTerry A. Brown 250 $a2. ed. italiana condotta sulla 7. ed. inglese / a cura di Giovanni Maga 264 1$aBologna :$bZanichelli,$c2017 300 $aviii, 344 p. :$bill. ;$c24 cm 500 $aOrig. title: Gene cloning and DNA analysis : an introduction. -7th ed.. - 2016 650 4$aBiotechnology 700 1 $aMaga, Giovanni 907 $a.b14353659$b06-12-18$c19-11-18 912 $a991003572629707536 945 $aLE003 660.6 BRO01.01 C.1 (ed. 2017)$g1$i2003000070460$lle003$op$pE39.50$q-$rl$s- $t1$u7$v0$w7$x0$y.i15871332$z06-12-18 945 $aLE003 660.6 BRO01.01 C.2 (ed. 2017)$g2$i2003000070453$lle003$op$pE39.50$q-$rl$s- $t0$u13$v2$w13$x0$y.i15871344$z06-12-18 996 $aBiotecnologie molecolari$990361 997 $aUNISALENTO 998 $ale003$b19-11-18$cm$da $e $fita$git $h0$i0