LEADER 03066nam 22007094a 450 001 9910451750403321 005 20210524211031.0 010 $a1-282-19503-4 010 $a9786612195037 010 $a3-11-916004-0 010 $a3-11-020002-3 024 7 $a10.1515/9783110200027 035 $a(CKB)1000000000520527 035 $a(EBL)325661 035 $a(OCoLC)232160040 035 $a(SSID)ssj0000148906 035 $a(PQKBManifestationID)11154408 035 $a(PQKBTitleCode)TC0000148906 035 $a(PQKBWorkID)10245202 035 $a(PQKB)11221739 035 $a(MiAaPQ)EBC325661 035 $a(DE-B1597)32453 035 $a(OCoLC)979752994 035 $a(DE-B1597)9783110200027 035 $a(Au-PeEL)EBL325661 035 $a(CaPaEBR)ebr10194849 035 $a(CaONFJC)MIL219503 035 $a(OCoLC)935267410 035 $a(EXLCZ)991000000000520527 100 $a20030303d2003 uy 0 101 0 $aeng 135 $aurun#---|u||u 181 $ctxt 182 $cc 183 $acr 200 10$aEquivariant degree theory$b[electronic resource] /$fJorge Ize, Alfonso Vignoli 205 $aReprint 2012 210 $aBerlin ;$aNew York $cWalter de Gruyter$d2003 215 $a1 online resource (384 p.) 225 1 $aDe Gruyter series in nonlinear analysis and applications,$x0941-813X ;$v8 300 $aDescription based upon print version of record. 311 0 $a3-11-017550-9 320 $aIncludes bibliographical references (p. [337]-358) and index. 327 $tFront matter --$tPreface --$tContents --$tIntroduction --$tChapter 1. Preliminaries --$tChapter 2. Equivariant Degree --$tChapter 3. Equivariant Homotopy Groups of Spheres --$tChapter 4. Equivariant Degree and Applications --$tAppendix A. Equivariant Matrices --$tAppendix ?. Periodic Solutions of Linear Systems --$tBibliography --$tIndex 330 $aThis book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties. 410 0$aGruyter series in nonlinear analysis and applications ;$v8. 606 $aTopological degree 606 $aHomotopy groups 608 $aElectronic books. 615 0$aTopological degree. 615 0$aHomotopy groups. 676 $a514/.2 686 $aSK 300$2rvk 700 $aIze$b Jorge$f1946-$0876707 701 $aVignoli$b Alfonso$f1940-$060716 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910451750403321 996 $aEquivariant degree theory$92460397 997 $aUNINA