LEADER 05360nam 2200697Ia 450 001 9910451553503321 005 20200520144314.0 010 $a1-281-92449-0 010 $a9786611924492 010 $a981-277-288-X 035 $a(CKB)1000000000408867 035 $a(EBL)1679289 035 $a(OCoLC)879074155 035 $a(SSID)ssj0000247136 035 $a(PQKBManifestationID)12079727 035 $a(PQKBTitleCode)TC0000247136 035 $a(PQKBWorkID)10195706 035 $a(PQKB)11353816 035 $a(MiAaPQ)EBC1679289 035 $a(WSP)00006218 035 $a(Au-PeEL)EBL1679289 035 $a(CaPaEBR)ebr10201434 035 $a(CaONFJC)MIL192449 035 $a(EXLCZ)991000000000408867 100 $a20070817d2006 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSmooth particle applied mechanics$b[electronic resource] $ethe state of the art /$fWilliam Graham Hoover 210 $aSingapore $cWorld Scientific$dc2006 215 $a1 online resource (315 p.) 225 1 $aAdvanced series in nonlinear dynamics ;$vv. 25 300 $aDescription based upon print version of record. 311 $a981-270-002-1 320 $aIncludes bibliographical references and index. 327 $aContents ; Dedication and Motivation ; Preface ; 1. Physical Ideas Underlying SPAM ; 1.1 Motivation and Summary ; 1.2 Particles versus Continua ; 1.3 Newton's Particle Mechanics ; 1.4 Eulerian and Lagrangian Continuum Mechanics ; 1.5 Computer Simulation of Microscopic Particle Motion 327 $a1.6 Liouville's Theorem Statistical Mechanics ; 1.7 Simulating Continua with Particles ; 1.8 SPAM [ Smooth Particle Applied Mechanics ] ; 1.9 Example: A Molecular Dynamics Simulation ; 1.10 References ; 2. Continuum Mechanics ; 2.1 Summary and Scope of Continuum Mechanics 327 $a2.2 Evolution Equations for Fluids and Solids 2.3 Initial and Boundary Conditions ; 2.4 Constitutive Equations for Equilibrium Fluids ; 2.5 Constitutive Relations for Nonequilibrium Fluids ; 2.6 Artificial Viscosity and Conductivity ; 2.7 Constitutive Relations for Elastic Solids 327 $a2.8 Constitutive Relation for Nonequilibrium Plasticity 2.9 Plasticity Algorithm ; 2.10 Example: Heat Conduction in One Dimension ; 2.11 Example: Sound Propagation in One Dimension ; 2.12 Example: Rayleigh-Benard Flow in Two Dimensions ; 2.13 References ; 3. Smooth Particle Methods 327 $a3.1 Summary 3.2 Motivation ; 3.3 Basic Equations ; 3.4 Interpolation on an Irregular Grid ; 3.5 Alternative Averages: [ f0 f1 f2 ... ] ; 3.6 Weight Functions ; 3.7 Continuity Equation from V.v with SPAM ; 3.8 Evaluating the Spatial Derivatives {Vp V.P V.Q} 327 $a3.9 SPAM Equation of Motion and Energy Equation 330 $a This book takes readers through all the steps necessary for solving hard problems in continuum mechanics with smooth particle methods. Pedagogical problems clarify the generation of initial conditions, the treatment of boundary conditions, the integration of the equations of motion, and the analysis of the results. Particular attention is paid to the parallel computing necessary for large problems and to the graphic displays, including debugging software, required for the efficient completion of computational projects. The book is self-contained, with summaries of classical particle mechanic 410 0$aAdvanced series in nonlinear dynamics ;$vv. 25. 606 $aMechanics, Analytic 606 $aMechanics, Applied$xMathematical models 606 $aParticle methods (Numerical analysis) 608 $aElectronic books. 615 0$aMechanics, Analytic. 615 0$aMechanics, Applied$xMathematical models. 615 0$aParticle methods (Numerical analysis) 676 $a531 700 $aHoover$b William G$g(William Graham),$f1936-$047793 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910451553503321 996 $aSmooth particle applied mechanics$92123864 997 $aUNINA