LEADER 03919nam 22007332 450 001 9910451434203321 005 20151005020621.0 010 $a1-107-18739-7 010 $a1-281-38384-8 010 $a9786611383848 010 $a0-511-39806-9 010 $a0-511-39729-1 010 $a0-511-40091-8 010 $a0-511-39656-2 010 $a0-511-54294-1 010 $a0-511-39887-5 035 $a(CKB)1000000000406262 035 $a(EBL)343558 035 $a(OCoLC)437209200 035 $a(SSID)ssj0000189269 035 $a(PQKBManifestationID)11180689 035 $a(PQKBTitleCode)TC0000189269 035 $a(PQKBWorkID)10156470 035 $a(PQKB)10858727 035 $a(UkCbUP)CR9780511542947 035 $a(MiAaPQ)EBC343558 035 $a(PPN)145854779 035 $a(Au-PeEL)EBL343558 035 $a(CaPaEBR)ebr10229622 035 $a(CaONFJC)MIL138384 035 $a(EXLCZ)991000000000406262 100 $a20090505d2008|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe large sieve and its applications $earithmetic geometry, random walks and discrete groups /$fE. Kowalski$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2008. 215 $a1 online resource (xxi, 293 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v175 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-88851-4 320 $aIncludes bibliographical references and index. 327 $g1.$tIntroduction --$g2.$tThe principle of the large sieve --$g3.$tGroup and conjugacy sieves --$g4.$tElementary and classical examples --$g5.$tDegrees of representations of finite groups --$g6.$tProbabilistic sieves --$g7.$tSieving in discrete groups --$g8.$tSieving for Frobenius over finite fields --$gApp. A.$tSmall sieves --$gApp. B.$tLocal density computations over finite fields --$gApp. C.$tRepresentation theory --$gApp. D.$tProperty (T) and Property ([tau]) --$gApp. E.$tLinear algebraic groups --$gApp. F.$tProbability theory and random walks --$gApp. G.$tSums of multiplicative functions --$gApp. H.$tTopology. 330 $aAmong the modern methods used to study prime numbers, the 'sieve' has been one of the most efficient. Originally conceived by Linnik in 1941, the 'large sieve' has developed extensively since the 1960s, with a recent realisation that the underlying principles were capable of applications going well beyond prime number theory. This book develops a general form of sieve inequality, and describes its varied applications, including the study of families of zeta functions of algebraic curves over finite fields; arithmetic properties of characteristic polynomials of random unimodular matrices; homological properties of random 3-manifolds; and the average number of primes dividing the denominators of rational points on elliptic curves. Also covered in detail are the tools of harmonic analysis used to implement the forms of the large sieve inequality, including the Riemann Hypothesis over finite fields, and Property (T) or Property (tau) for discrete groups. 410 0$aCambridge tracts in mathematics ;$v175. 517 3 $aThe Large Sieve & its Applications 606 $aSieves (Mathematics) 606 $aArithmetical algebraic geometry 606 $aRandom walks (Mathematics) 606 $aDiscrete groups 615 0$aSieves (Mathematics) 615 0$aArithmetical algebraic geometry. 615 0$aRandom walks (Mathematics) 615 0$aDiscrete groups. 676 $a512.73 700 $aKowalski$b Emmanuel$f1969-$0853654 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910451434203321 996 $aThe large sieve and its applications$91906049 997 $aUNINA