LEADER 02530nam 2200589Ia 450 001 9910451346003321 005 20200520144314.0 010 $a1-281-89705-1 010 $a9786611897055 010 $a981-270-131-1 035 $a(CKB)1000000000334338 035 $a(EBL)296199 035 $a(OCoLC)476064124 035 $a(SSID)ssj0000218217 035 $a(PQKBManifestationID)11186881 035 $a(PQKBTitleCode)TC0000218217 035 $a(PQKBWorkID)10213332 035 $a(PQKB)10349968 035 $a(MiAaPQ)EBC296199 035 $a(WSP)00001849 035 $a(Au-PeEL)EBL296199 035 $a(CaPaEBR)ebr10174003 035 $a(CaONFJC)MIL189705 035 $a(EXLCZ)991000000000334338 100 $a20050105d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPartial regularity for harmonic maps and related problems$b[electronic resource] /$fRoger Moser 210 $aHackensack, NJ $cWorld Scientific$d2005 215 $a1 online resource (194 p.) 300 $aDescription based upon print version of record. 311 $a981-256-085-8 320 $aIncludes bibliographical references and index. 327 $aPreface; Contents; Chapter 1 Introduction; Chapter 2 Analytic Preliminaries; Chapter 3 Harmonic Maps; Chapter 4 Almost Harmonic Maps; Chapter 5 Evolution Problems; Bibliography; Index 330 $aThe book presents a collection of results pertaining to the partial regularity of solutions to various variational problems, all of which are connected to the Dirichlet energy of maps between Riemannian manifolds, and thus related to the harmonic map problem. The topics covered include harmonic maps and generalized harmonic maps; certain perturbed versions of the harmonic map equation; the harmonic map heat flow; and the Landau-Lifshitz (or Landau-Lifshitz-Gilbert) equation. Since the methods in regularity theory of harmonic maps are quite subtle, it is not immediately clear how they can be ap 606 $aHarmonic maps$xMathematical models 606 $aMathematical physics 608 $aElectronic books. 615 0$aHarmonic maps$xMathematical models. 615 0$aMathematical physics. 676 $a514/.74 700 $aMoser$b Roger$066366 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910451346003321 996 $aPartial regularity for harmonic maps and related problems$91095037 997 $aUNINA