LEADER 02336nam 2200589Ia 450 001 9910451287403321 005 20200520144314.0 010 $a1-281-91963-2 010 $a9786611919634 010 $a981-277-468-8 035 $a(CKB)1000000000412035 035 $a(StDuBDS)AH24684541 035 $a(SSID)ssj0000129958 035 $a(PQKBManifestationID)11134184 035 $a(PQKBTitleCode)TC0000129958 035 $a(PQKBWorkID)10081071 035 $a(PQKB)11559750 035 $a(MiAaPQ)EBC1681535 035 $a(WSP)00005931 035 $a(Au-PeEL)EBL1681535 035 $a(CaPaEBR)ebr10201161 035 $a(CaONFJC)MIL191963 035 $a(OCoLC)879025458 035 $a(EXLCZ)991000000000412035 100 $a20060711d2006 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aContinued fractions$b[electronic resource] /$fDoug Hensley 210 $aHackensack, N.J. $cWorld Scientific$dc2006 215 $a1 online resource (xiii, 245 p. ) $cill 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a981-256-477-2 320 $aIncludes bibliographical references and index. 327 $a# Generalizations of the gcd and the Euclidean Algorithm # Continued Fractions with Small Partial Quotients # Ergodic Theory # Complex Continued Fractions # Multidimensional Diophantine Approximation # Powers of an Algebraic Integer # Marshall Hall's Theorem # Functional-Analytic Techniques # The Generating Function Method # Conformal Iterated Function Systems # Convergence of Continued Fractions 330 $aThis text places emphasis on continued fraction Cantor sets and the Hausdorff dimension, algorithms and analysis of algorithms, and multi-dimensional algorithms for simultaneous diophantine approximation. Various computer-generated graphics are presented, and the underlying algorithms are discussed. 606 $aContinued fractions 606 $aSeries 608 $aElectronic books. 615 0$aContinued fractions. 615 0$aSeries. 676 $a512.72 700 $aHensley$b Doug$0994795 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910451287403321 996 $aContinued fractions$92278590 997 $aUNINA