LEADER 03127nam 2200697Ia 450 001 9910451275703321 005 20200520144314.0 010 $a1-281-49123-3 010 $a9786611491239 010 $a3-7643-8614-2 024 7 $a10.1007/978-3-7643-8614-6 035 $a(CKB)1000000000440908 035 $a(EBL)367551 035 $a(OCoLC)272306915 035 $a(SSID)ssj0000199282 035 $a(PQKBManifestationID)11187638 035 $a(PQKBTitleCode)TC0000199282 035 $a(PQKBWorkID)10187952 035 $a(PQKB)10913434 035 $a(DE-He213)978-3-7643-8614-6 035 $a(MiAaPQ)EBC367551 035 $a(MiAaPQ)EBC5292434 035 $a(PPN)127052798 035 $a(Au-PeEL)EBL367551 035 $a(CaPaEBR)ebr10239309 035 $a(CaONFJC)MIL939322 035 $a(Au-PeEL)EBL5292434 035 $a(CaONFJC)MIL149123 035 $a(OCoLC)1028942953 035 $a(EXLCZ)991000000000440908 100 $a20071207d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 04$aThe mathematics of Minkowski space-time$b[electronic resource] $ewith an introduction to commutative hypercomplex numbers /$fFrancesco Catoni ... [et al.] 205 $a1st ed. 2008. 210 $aBasel ;$aBoston $cBirkha?user$dc2008 215 $a1 online resource (271 p.) 225 1 $aFrontiers in mathematics 300 $aDescription based upon print version of record. 311 $a3-7643-8613-4 320 $aIncludes bibliographical references and index. 327 $aN-Dimensional Commutative Hypercomplex Numbers -- The Geometries Generated by Hypercomplex Numbers -- Trigonometry in the Minkowski Plane -- Uniform and Accelerated Motions in the Minkowski Space-Time (Twin Paradox) -- General Two-Dimensional Hypercomplex Numbers -- Functions of a Hyperbolic Variable -- Hyperbolic Variables on Lorentz Surfaces -- Constant Curvature Lorentz Surfaces -- Generalization of Two-Dimensional Special Relativity (Hyperbolic Transformations and the Equivalence Principle). 330 $aHyperbolic numbers are proposed for a rigorous geometric formalization of the space-time symmetry of two-dimensional Special Relativity. The system of hyperbolic numbers as a simple extension of the field of complex numbers is extensively studied in the book. In particular, an exhaustive solution of the "twin paradox" is given, followed by a detailed exposition of space-time geometry and trigonometry. Finally, an appendix on general properties of commutative hypercomplex systems with four unities is presented. 410 0$aFrontiers in mathematics. 606 $aGeneralized spaces 606 $aSpecial relativity (Physics) 608 $aElectronic books. 615 0$aGeneralized spaces. 615 0$aSpecial relativity (Physics) 676 $a516.374 701 $aCatoni$b Francesco$01033674 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910451275703321 996 $aThe mathematics of Minkowski space-time$92452346 997 $aUNINA