LEADER 05063nam 22006494a 450 001 9910451240603321 005 20200520144314.0 010 $a981-277-792-X 035 $a(CKB)1000000000405429 035 $a(EBL)1679319 035 $a(OCoLC)881611050 035 $a(SSID)ssj0000156378 035 $a(PQKBManifestationID)11946843 035 $a(PQKBTitleCode)TC0000156378 035 $a(PQKBWorkID)10123778 035 $a(PQKB)11727454 035 $a(MiAaPQ)EBC1679319 035 $a(WSP)00004899 035 $a(Au-PeEL)EBL1679319 035 $a(CaPaEBR)ebr10201237 035 $a(CaONFJC)MIL505423 035 $a(EXLCZ)991000000000405429 100 $a20020328d2002 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFolk algebras in algebra$b[electronic resource] $elogic and computer science /$fMarcelo Fabia?n Frias 210 $aRiver Edge, NJ $cWorld Scientific$d2002 215 $a1 online resource (230 p.) 225 1 $aAdvances in logic ;$vv. 2 300 $aDescription based upon print version of record. 311 $a981-02-4876-8 320 $aIncludes bibliographical references (p. 207-213) and index. 327 $aContents ; Preface ; Chapter 1 Introduction and Motivations ; 1.1 Software Specification Binary Relations and Fork ; Chapter 2 Algebras of Binary Relations and Relation Algebras ; 2.1 History and Definitions ; 2.2 Arithmetical Properties ; Chapter 3 Proper and Abstract Fork Algebras 327 $a3.1 On the Origin of Fork Algebras 3.2 Definition of the Classes ; 3.3 Arithmetical Properties ; Chapter 4 Representability and Independence ; 4.1 Representability of Abstract Fork Algebras ; 4.2 Independence of the Axiomatization of Fork 327 $aChapter 5 Interpretability of Classical First-Order Logic 5.1 Basic Definitions ; 5.2 Interpreting FOLE ; Chapter 6 Algebraization of Non-Classical Logics ; 6.1 Basic Definitions and Properties ; 6.2 The Fork Logic FL ; 6.3 Modal Logics ; 6.4 Representation of Constraints in FL 327 $a6.5 Interpretability of Modal Logics in FL 6.6 A Proof Theoretical Approach ; 6.7 Interpretability of Propositional Dynamic Logic in FL ; 6.8 The Fork Logic FL' ; 6.8.1 Syntax of FL' ; 6.8.2 Semantics of FL' ; 6.9 A Rasiowa-Sikorski Calculus for FL' 327 $a6.9.1 The Deduction System for FL' 6.9.2 Soundness and Completeness of the Calculus FLC ; 6.9.3 Examples of Proofs in the Calculus FLC ; 6.10 A Relational Proof System for Intuitionistic Logic ; 6.10.1 Intuitionistic Logic ; 6.10.2 Interpretability of Intuitionistic Logic in FL' 327 $a6.10.3 A Fork Logic Calculus for Intuitionistic Logic 330 $a Fork algebras are a formalism based on the relational calculus, with interesting algebraic and metalogical properties. Their representability is especially appealing in computer science, since it allows a closer relationship between their language and models. This book gives a careful account of the results and presents some applications of Fork algebras in computer science, particularly in system specification and program construction. Many applications of Fork algebras in formal methods can be applied in many ways, and the book covers all the essentials in order to provide the reader with a 410 0$aAdvances in logic ;$vv. 2. 606 $aComputer science$xMathematics 606 $aLogic, Symbolic and mathematical 608 $aElectronic books. 615 0$aComputer science$xMathematics. 615 0$aLogic, Symbolic and mathematical. 676 $a004/.01/51 700 $aFrias$b Marcelo Fabia?n$f1968-$0863340 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910451240603321 996 $aFolk algebras in algebra$91927145 997 $aUNINA