LEADER 03130oam 2200649I 450 001 9910450967503321 005 20200520144314.0 010 $a1-134-31112-5 010 $a0-7494-3444-9 010 $a1-138-12658-6 010 $a1-280-06385-8 010 $a0-203-41633-3 024 7 $a10.4324/9780203416334 035 $a(CKB)1000000000444287 035 $a(EBL)181969 035 $a(OCoLC)57176616 035 $a(SSID)ssj0000287890 035 $a(PQKBManifestationID)11213569 035 $a(PQKBTitleCode)TC0000287890 035 $a(PQKBWorkID)10388412 035 $a(PQKB)11228905 035 $a(MiAaPQ)EBC181969 035 $a(Au-PeEL)EBL181969 035 $a(CaPaEBR)ebr10099989 035 $a(CaONFJC)MIL6385 035 $a(OCoLC)958104221 035 $a(EXLCZ)991000000000444287 100 $a20180706d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe action learning handbook $epowerful techniques for education, professional development and training /$fIan McGill and Anne Brockbank 210 1$aLondon ;$aNew York :$cRoutledgeFalmer :$cTaylor & Francis Group,$d2004. 215 $a1 online resource (292 p.) 300 $aDescription based upon print version of record. 311 $a0-415-33511-6 311 $a0-203-44356-X 320 $aIncludes bibliographical references (p. [270]-278) and index. 327 $aBook Cover; Title; Contents; Acknowledgements; Introduction; Introducing action learning; Types of action learning; Introductory workshops; Starting a set: the first and second meetings; Dialogue and collaborative learning; Action learning as a reflective process; The social context of action learning; Group dynamics in action learning; Being a presenter; Being a set member; Being a facilitator; Development and accreditation of facilitators of action learning; The process review; Evaluating action learning; Endings; Conclusion; Appendix: Group action learning; References; Index 330 $aAction learning is a continued process of learning and reflection with the support of a group of colleagues, working on real issues. The action learning method is increasingly used to bring innovation to many different fields of work. The principles of action learning can achieve improvement and transformation in a wide range of applications and disciplines, including professional training and educational contexts.
This book is a comprehensive guide to action learning which maintains an accessible, practical focus throughout. It is packed with useful resources, including case studies and id 606 $aActive learning 606 $aExperiential learning 608 $aElectronic books. 615 0$aActive learning. 615 0$aExperiential learning. 676 $a370.1523 700 $aMcGill$b Ian.$0889953 701 $aBrockbank$b Anne$f1943-$0889954 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910450967503321 996 $aThe action learning handbook$91988376 997 $aUNINA LEADER 07852oam 2200505 450 001 9910830204103321 005 20231108230927.0 010 $a1-119-88568-X 010 $a1-119-88566-3 010 $a1-119-88567-1 035 $a(MiAaPQ)EBC7081837 035 $a(Au-PeEL)EBL7081837 035 $a(CKB)24815166700041 035 $a(EXLCZ)9924815166700041 100 $a20230211d2023 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComputer models of process dynamics $efrom Newton to energy fields /$fOlis Harold Rubin 210 1$aHoboken, N.J. :$cJohn Wiley & Sons, Incorporated,$d[2023] 210 4$d©2023 215 $a1 online resource (xiv, 302 pages) $cillustrations 311 08$aPrint version: Rubin, Olis Harold Computer Models of Process Dynamics Newark : John Wiley & Sons, Incorporated,c2022 9781119885658 320 $aIncludes bibliographical references and index. 327 $aCover -- Title Page -- Copyright Page -- Contents -- Chapter 1 Introduction -- 1.1 Engineering uses of computer models -- 1.1.1 Mission statement -- 1.2 The subject matter -- 1.3 Mathematical material -- 1.4 Some remarks -- Bibliography -- Chapter 2 From Computer Hardware to Software -- 2.1 Introduction -- 2.2 Computing machines -- 2.2.1 The software interface -- 2.3 Computer programming -- 2.3.1 Algebraic expressions -- 2.3.2 Math functions -- 2.3.3 Computation loops -- 2.3.4 Decision making -- 2.3.5 Graphics -- 2.3.6 User defined functions -- 2.4 State transition machines -- 2.4.1 A binary signal generator -- 2.4.2 Operational control of an industrial plant -- 2.5 Difference engines -- 2.5.1 Difference equation to calculate compound interest -- 2.6 Iterative programming -- 2.6.1 Inverse functions -- 2.7 Digital simulation of differential equations -- 2.7.1 Rectangular integration -- 2.7.2 Trapezoidal integration -- 2.7.3 Second-order integration -- 2.7.4 An Example -- 2.8 Discussion -- Exercises -- References -- Chapter 3 Creative thinking and scientific theories -- 3.1 Introduction -- 3.2 The dawn of astronomy -- 3.3 The renaissance -- 3.3.1 Galileo -- 3.3.2 Newton -- 3.4 Electromagnetism -- 3.4.1 Magnetic fields -- 3.4.2 Electromagnetic induction -- 3.4.3 Electromagnetic radiation -- 3.5 Aerodynamics -- 3.5.1 Vector flow fields -- 3.6 Discussion -- References -- Chapter 4 Calculus and the computer -- 4.1 Introduction -- 4.2 Mathematical solution of differential equations -- 4.3 From physical analogs to analog computers -- 4.4 Picard's method for solving a nonlinear differential equation -- 4.4.1 Mechanization of Picard's method -- 4.4.2 Feedback model of the differential equation -- 4.4.3 Approximate solution by Taylor series -- 4.5 Exponential functions and linear differential equations. 327 $a4.5.1 Taylor series to approximate exponential functions -- 4.6 Sinusoidal functions and phasors -- 4.6.1 Taylor series to approximate sinusoids -- 4.7 Bessel's equation -- 4.8 Discussion -- Exercises -- Bibliography -- Chapter 5 Science and computer models -- 5.1 Introduction -- 5.2 A planetary orbit around a stationary Sun -- 5.2.1 An analytic solution for planetary orbits -- 5.2.2 A difference equation to model planetary orbits -- 5.3 Simulation of a swinging pendulum -- 5.3.1 A graphical construction to show the motion of a pendulum -- 5.3.2 Truncation and roundoff errors -- 5.4 Lagrange's equations of motion -- 5.4.1 A double pendulum -- 5.4.2 A few comments -- 5.4.3 Modes of motion of a double pendulum -- 5.4.4 Structural vibrations in an aircraft -- 5.5 Discussion -- Exercises -- Bibliography -- Chapter 6 Flight simulators -- 6.1 Introduction -- 6.2 The motion of an aircraft -- 6.2.1 The equations of motion -- 6.3 Short period pitching motion -- 6.3.1 Case study of short period pitching motion -- 6.3.2 State equations of short period pitching -- 6.3.3 Transfer functions of short period pitching -- 6.3.4 Frequency response of short period pitching -- 6.4 Phugoid motion -- 6.5 User interfaces -- 6.6 Discussion -- Exercises -- Bibliography -- Chapter 7 Finite element models and the diffusion of heat -- 7.1 Introduction -- 7.2 A thermal model -- 7.2.1 A finite element model based on an electrical ladder network -- 7.2.2 Free settling from an initial temperature profile -- 7.2.3 Step response test -- 7.2.4 State space model of diffusion -- 7.3 A practical application -- 7.4 Two-dimensional steady-state model -- 7.5 Discussion -- Exercises -- Bibliography -- Chapter 8 Wave equations -- 8.1 Introduction -- 8.2 Energy storage mechanisms -- 8.2.1 Partial differential equation describing propagation in a transmission line. 327 $a8.3 A finite element model of a transmission line -- 8.4 State space model of a standing wave in a vibrating system -- 8.4.1 State space model of a multiple compound pendulum -- 8.5 A two-dimensional electromagnetic field -- 8.6 A two-dimensional potential flow model -- 8.7 Discussion -- Exercises -- Bibliography -- Chapter 9 Uncertainty and softer science -- 9.1 Introduction -- 9.2 Empirical and ``black box´´ models -- 9.2.1 An imperfect model of a simple physical object -- 9.2.2 Finite impulse response models -- 9.3 Randomness within computer models -- 9.3.1 Random number generators and data analysis -- 9.3.2 Statistical estimation and the method of least squares -- 9.3.3 A state estimator -- 9.3.4 A velocity estimator -- 9.3.5 An FIR filter -- 9.4 Economic, Geo-, Bio-, and other sciences -- 9.4.1 A pricing strategy -- 9.4.2 The productivity of money -- 9.4.3 Comments on business models -- 9.5 Digital images -- 9.5.1 An image processor -- 9.6 Discussion -- Exercises -- Bibliography -- Chapter 10 Computer models in a development project -- 10.1 Introduction -- 10.1.1 The scope of this chapter -- 10.2 A motor drive model -- 10.2.1 A conceptual model -- 10.2.2 The motor drive parameters -- 10.2.3 Creating the simulation model -- 10.2.4 The electrical and mechanical subsystems -- 10.2.5 System integration -- 10.2.6 Configuration management -- 10.3 The definition phase -- 10.3.1 Selection of the motor -- 10.3.2 Simulation of load disturbances -- 10.4 The design phase -- 10.4.1 Calculation of frequency response -- 10.4.2 The current control loop -- 10.4.3 Design review and further actions -- 10.4.4 Rate feedback -- 10.5 A setback to the project -- 10.5.1 Elastic coupling between motor and load -- 10.6 Discussion -- Exercises -- Bibliography -- Chapter 11 Postscript -- 11.1 Looking back -- 11.2 The operation f a imulation faciity.-- 11.3 Looking forward -- Bibliography -- Appendix A Frequency response methods -- Appendix B Vector analysis -- Appendix C Scalar and vector fields -- Appendix D Probability and statistical models -- Index -- EULA. 330 $a"The subject of computer modeling evolved from analog computing, which gained its majority in the mid twentieth century and was then superseded by digital simulation. In the next five years computer models will serve as the engine that simulates virtual reality within a user interface that exploits the products of the computer games industry. The future may include the increasing use of 3D displays with animation, and computer inputs that come from the user via 3D digital cameras"--$cProvided by publisher. 606 $aPhysics$xData processing 606 $aEngineering$xData processing 606 $aEconomics$xData processing 615 0$aPhysics$xData processing. 615 0$aEngineering$xData processing. 615 0$aEconomics$xData processing. 676 $a294.33653 700 $aRubin$b Olis$01665297 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910830204103321 996 $aComputer models of process dynamics$94082567 997 $aUNINA