LEADER 00943nam0-22003491i-450 001 990001800210403321 005 20191125151852.0 010 $a88-207-0681-4 035 $a000180021 035 $aFED01000180021 035 $a(Aleph)000180021FED01 035 $a000180021 100 $a20030910g19969999km-y0itay50------ba 101 0 $aita 102 $aIT 105 $aa-------001yy 200 1 $aEntomologia applicata$fErmenegildo Tremblay 205 $a5. ed. 210 $aNapoli$cLiguori$d1996- 215 $av.$d24 cm 300 $a1.: Generalità e mezzi di controllo. 610 0 $aInsetti 676 $a595.7 700 1$aTremblay,$bErmenegildo$0353655 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001800210403321 952 $a60 595.7 TREE-1 1996 BIS$b47971$fFAGBC 952 $a60 595.7 TREE-1 1996$b5945$fFAGBC 959 $aFAGBC 996 $aEntomologia applicata$977779 997 $aUNINA LEADER 03164nam 2200697Ia 450 001 9910450876803321 005 20200520144314.0 010 $a1-281-93408-9 010 $a9786611934088 010 $a981-279-237-6 035 $a(CKB)1000000000411668 035 $a(EBL)1679398 035 $a(SSID)ssj0000169910 035 $a(PQKBManifestationID)11165367 035 $a(PQKBTitleCode)TC0000169910 035 $a(PQKBWorkID)10215301 035 $a(PQKB)10060211 035 $a(MiAaPQ)EBC1679398 035 $a(WSP)00006438 035 $a(PPN)168075628 035 $a(Au-PeEL)EBL1679398 035 $a(CaPaEBR)ebr10255817 035 $a(CaONFJC)MIL193408 035 $a(OCoLC)879023565 035 $a(EXLCZ)991000000000411668 100 $a20070912d2008 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHecke's theory of modular forms and Dirichlet series$b[electronic resource] /$fBruce C. Berndt, Marvin I. Knopp 210 $aHacensack, NJ $cWorld Scientific$dc2008 215 $a1 online resource (150 p.) 225 1 $aMonographs in Number Theory 300 $aExpanded version of lecture notes by B. Berndt based in turn on a series of lectures given by Erich Hecke in 1938. 311 $a981-270-635-6 320 $aIncludes bibliographical references (p. 129-134) and index. 327 $aPreface in Two Acts with a Prelude, Interlude, and Postlude; Contents; 1. Introduction; 2. The main correspondence theorem; 3. A fundamental region; 4. The case > 2; 5. The case < 2; 6. The case = 2; 7. Bochner's generalization of the main correspondence theorem of Hecke, and related results; 8. Identities equivalent to the functional equation and to the modular relation; Bibliography; Index 330 $aIn 1938, at the Institute for Advanced Study, E Hecke gave a series of lectures on his theory of correspondence between modular forms and Dirichlet series. Since then, the Hecke correspondence has remained an active feature of number theory and, indeed, it is more important today than it was in 1936 when Hecke published his original papers. This book is an amplified and up-to-date version of the former author's lectures at the University of Illinois at Urbana-Champaign, based on Hecke's notes. Providing many details omitted from Hecke's notes, it includes various new and important developments 410 0$aMonographs in Number Theory 606 $aDirichlet series 606 $aForms (Mathematics) 606 $aModular functions 606 $aHecke operators 608 $aElectronic books. 615 0$aDirichlet series. 615 0$aForms (Mathematics) 615 0$aModular functions. 615 0$aHecke operators. 676 $a515.243 700 $aBerndt$b Bruce C.$f1939-$054440 701 $aHecke$b Erich$f1887-1947.$059032 701 $aKnopp$b Marvin Isadore$f1933-$060287 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910450876803321 996 $aHecke's theory of modular forms and Dirichlet series$92082464 997 $aUNINA