LEADER 02590nam 22006134a 450 001 9910450719603321 005 20200520144314.0 010 $a1-281-88114-7 010 $a9786611881146 010 $a981-270-092-7 035 $a(CKB)1000000000334253 035 $a(EBL)296116 035 $a(OCoLC)476063455 035 $a(SSID)ssj0000147804 035 $a(PQKBManifestationID)11149309 035 $a(PQKBTitleCode)TC0000147804 035 $a(PQKBWorkID)10013990 035 $a(PQKB)11547491 035 $a(MiAaPQ)EBC296116 035 $a(WSP)00000735 035 $a(Au-PeEL)EBL296116 035 $a(CaPaEBR)ebr10173964 035 $a(CaONFJC)MIL188114 035 $a(EXLCZ)991000000000334253 100 $a20050819d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe enigma of ferment$b[electronic resource] $efrom the philosopher's stone to the first biochemical Nobel prize /$fUlf Lagerkvist 210 $aHackensack, NJ $cWorld Scientific$dc2005 215 $a1 online resource (170 p.) 300 $aDescription based upon print version of record. 311 $a981-256-421-7 320 $aIncludes bibliographical references (p. 157-158) and index. 327 $aContents; Preface; Introduction; Alchemy and the Dawn of Chemistry; Medicine and Chemistry in the Scienti.c Revolution; A Golden Age of Chemistry; Ferment or Vital Force; A Fortuitous Observation; The Nobel Prize; Bibliography; Index 330 $aThis popular account of the history of ferment takes the reader on a fascinating journey from its obscure origins in medieval medicine and alchemy to the modern concept of the enzyme. During the 19th century, the question of the nature of the ferment led to a long and bitter conflict between those that believed in a vital force peculiar to the living cell and those that looked for a more chemical explanation. The book takes an in-depth look at the events of 1897 when Eduard Buchner demonstrated that cell-free extracts of yeast could catalyze alcoholic fermentation, putting an end to "vitalism" 606 $aFermentation$xHistory 606 $aYeast 606 $aEnzymes 608 $aElectronic books. 615 0$aFermentation$xHistory. 615 0$aYeast. 615 0$aEnzymes. 676 $a572/.49 700 $aLagerkvist$b Ulf$0879141 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910450719603321 996 $aThe enigma of ferment$91963243 997 $aUNINA LEADER 08093nam 2200661 450 001 996499866503316 005 20231110224847.0 010 $a3-031-09559-6 035 $a(MiAaPQ)EBC7150670 035 $a(Au-PeEL)EBL7150670 035 $a(CKB)25510541200041 035 $a(OCoLC)1352968496 035 $a(PPN)266351786 035 $a(EXLCZ)9925510541200041 100 $a20230414d2022 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 04$aThe mathematics of marine modelling $ewater, solute and particle dynamics in estuaries and shallow seas /$fHenk Schuttelaars, Arnold Heemink, Eric Deleersnijder, editors 210 1$aCham, Switzerland :$cSpringer,$d[2022] 210 4$d©2022 215 $a1 online resource (324 pages) 225 1 $aMathematics of Planet Earth ;$vv.9 311 08$aPrint version: Schuttelaars, Henk The Mathematics of Marine Modelling Cham : Springer International Publishing AG,c2023 9783031095580 320 $aIncludes bibliographical references and index. 327 $aIntro -- Preface -- Contents -- Contributors -- 1 Basic Equations of Marine Flows -- 1.1 Mathematical Description of Fluids -- 1.1.1 Fluids as Continuous Media -- 1.1.2 Integral and Differential Formulations -- 1.1.3 Averaging of Turbulent Flows -- 1.2 Governing Equations -- 1.2.1 Volume Conservation -- 1.2.2 Salt Conservation -- 1.2.3 Heat Balance -- 1.2.4 Momentum Balance -- 1.2.5 Common Formulations and Closures -- 1.3 Summary -- References -- 2 Water Waves in Isotropic and Anisotropic Media: A comparison -- 2.1 Introduction -- 2.2 Gravity Waves -- 2.2.1 Surface Gravity Waves in Homogeneous Fluids -- 2.2.2 Gravity Waves in Heterogeneous Media -- 2.3 Inertial Waves -- 2.3.1 Waves in Shear Flows -- 2.3.2 Waves in Rotating Basins -- 2.3.3 Three-dimensional Effects -- 2.4 Discussion -- 2.4.1 The Linear Shear Flow as `Problematic' Equilibrium -- 2.4.2 Waves in Anisotropic Media -- 2.4.3 Mixing Due to Wave Focusing and Mean Flows -- 2.5 Conclusion -- References -- 3 A Review of Nonlinear Boussinesq-Type Models for Coastal Ocean Modeling -- 3.1 Introduction -- 3.2 The Water Wave Problem -- 3.2.1 Dispersive Properties of the Linear Waves -- 3.2.2 Scaling of Variables and Operators -- 3.2.3 Nondimensionalization of Equations -- 3.2.4 Green-Naghdi Equation -- 3.3 A Finite Element Discretization of the Green-Naghdi Equation -- 3.3.1 Notation -- 3.3.2 Functional Setting -- 3.3.3 Variational Formulation and Solution Procedure -- 3.4 Numerical Results -- 3.5 Conclusions -- References -- 4 Tides in Coastal Seas. Influence of Topography and Bottom Friction -- 4.1 Introduction -- 4.2 Model Formulation -- 4.3 Fundamental Wave Solutions -- 4.3.1 Derivation with Klein-Gordon Equation -- 4.3.2 Kelvin Wave -- 4.3.3 Poincaré Waves -- 4.3.4 Wave Solutions with a Transverse Topographic Step -- 4.4 Amphidromic Patterns in Semi-enclosed Basins. 327 $a4.4.1 Superposition of Two Kelvin Waves -- 4.4.2 Solution to Extended Taylor Problem -- 4.4.3 Application to Basins Around the World -- 4.5 Discussion -- 4.6 Conclusions -- References -- 5 Variational Water-Wave Modeling: From Deep Water to Beaches -- 5.1 Introduction -- 5.2 Derivation of Luke's Variational Principle -- 5.3 Transformed Luke's/Miles' Variational Principles with Wavemaker -- 5.3.1 FEM and Mesh Motion -- 5.3.2 Numerical Results: Comparison with Wave-Tank Experiments -- 5.4 Coupling Water Waves to Shallow-Water Beach Hydraulics -- 5.4.1 Numerical Results: Damping of Waves on the Beach -- 5.5 Summary and Conclusions -- References -- 6 Quasi-2D Turbulence in Shallow Fluid Layers -- 6.1 Introduction -- 6.2 Two-Dimensional Turbulence -- 6.2.1 Inertial Ranges in 2D Turbulence -- 6.2.2 2D Turbulence: The Early Years -- 6.2.3 Coherent Structures and 2D Turbulence -- 6.3 2D Turbulence in Square, Rectangular and Circular Domains -- 6.3.1 Simulations of 2D Turbulence in Domains with No-Slip Walls -- 6.3.2 Quasi-Steady Final States: Laboratory Experiments -- 6.3.3 Forced 2D Turbulence on Confined Domains -- 6.4 Interaction of Vortices with Walls -- 6.4.1 No-Slip Walls as Vorticity Sources -- 6.4.2 Vorticity Production by Dipole-Wall Collisions -- 6.5 Review of 2D Turbulence Experiments in Shallow Fluids -- 6.5.1 Laboratory Experiments in Shallow Fluid Layers -- 6.5.2 2D Turbulence with Rayleigh Friction -- 6.5.3 Secondary Flows in Quasi-2D Turbulence in Thin Fluid Layers -- 6.5.4 Concluding Remarks -- 6.6 Summary -- References -- 7 Turbulent Dispersion -- 7.1 Introduction -- 7.2 Model Requirements -- 7.3 Model Development -- 7.4 Reduction to One Dimension with Boundaries -- 7.5 Application to Dispersion in Turbulent Jets -- 7.5.1 Turbulent Round Jet -- 7.5.2 Turbulent Planar Jet -- 7.6 Turbulent Flow along a Wall-The Logarithmic Velocity Profile. 327 $a7.7 Application to the Marine Ekman Layer -- 7.7.1 Surface Ekman Layer -- 7.7.2 Bottom Ekman Layer -- 7.8 Conclusions -- References -- 8 Spreading and Mixing in Near-Field River Plumes -- 8.1 Introduction -- 8.2 Dynamical Regions -- 8.3 A Simple Near-Field Plume Model -- 8.4 Complications to The Simple Plume Model -- 8.4.1 Local Mixing Parameterization -- 8.4.2 Plume Frontal Mixing -- 8.4.3 Rotation and Return to Geostrophy -- 8.5 Conclusions -- References -- 9 Lagrangian Modelling of Transport Phenomena Using Stochastic Differential Equations -- 9.1 Introduction -- 9.2 Stochastic Differential Equations -- 9.2.1 Introduction -- 9.2.2 Îto Stochastic Integrals -- 9.2.3 Îto Stochastic Differential Equations -- 9.2.4 Îto's Differentiation Rule -- 9.2.5 Stratonovich Stochastic Differential Equations -- 9.2.6 Fokker-Planck Equation -- 9.3 Particle Models for Marine Transport Problems -- 9.4 Numerical Approximation of Stochastic Differential Equations -- 9.5 Test Cases for Marine Transport Problems -- 9.5.1 Simple Vertical Diffusion -- 9.5.2 One Dimensional Water Column Including a Pycnocline -- 9.5.3 Multidimensional Diffusion in an Unbounded Domain -- 9.6 Conclusion -- References -- 10 Morphodynamic Modelling in Marine Environments: Model Formulation and Solution Techniques -- 10.1 Introduction -- 10.2 Morphodynamic Modelling Approaches -- 10.3 Process-Based Models -- 10.3.1 Mathematical Formulation of Simulation Models -- 10.3.2 Mathematical Formulation of Exploratory Models -- 10.4 Solution Procedure -- 10.4.1 Initial Value Approach -- 10.4.2 Bifurcation Approach -- 10.5 Example: Morphodynamics of Tidal Inlet Systems -- 10.5.1 Introduction -- 10.5.2 Cross-Sectionally Averaged Morphodynamic Equilibria -- 10.5.3 Depth-Averaged Morphodynamic Equilibria -- 10.6 Summary and Conclusions -- References. 327 $a11 Wetting and Drying Procedures for Shallow Water Simulations -- 11.1 Introduction -- 11.2 Governing Equations -- 11.3 Space Discretization -- 11.3.1 Finite Volume Methods -- 11.3.2 Discontinuous Galerkin Schemes -- 11.4 Time Discretization -- 11.4.1 Explicit Time Integration -- 11.4.2 Implicit Time Integration -- 11.5 Concluding Remarks -- References -- Appendix Index -- Index. 410 0$aMathematics of Planet Earth 606 $aOceanography$xMathematical models 606 $aApproximation theory 606 $aMathematical analysis 606 $aOceanografia$2thub 606 $aModels matemàtics$2thub 606 $aTeoria de l'aproximació$2thub 606 $aAnàlisi matemàtica$2thub 608 $aLlibres electrònics$2thub 615 0$aOceanography$xMathematical models. 615 0$aApproximation theory. 615 0$aMathematical analysis. 615 7$aOceanografia 615 7$aModels matemàtics 615 7$aTeoria de l'aproximació 615 7$aAnàlisi matemàtica 676 $a551.460015118 702 $aSchuttelaars$b Henk 702 $aDeleersnijder$b Eric 702 $aHeemink$b Arnold 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a996499866503316 996 $aThe mathematics of marine modelling$93088868 997 $aUNISA