LEADER 00957nam0-2200325---450- 001 990008316970403321 005 20060428112314.0 010 $a88-7284-381-2 035 $a000831697 035 $aFED01000831697 035 $a(Aleph)000831697FED01 035 $a000831697 100 $a20060428d1996----km-y0itay50------ba 101 0 $aita 102 $aIT 105 $aa-------001yy 200 1 $a<>biblioteca di Gerusalemme$elibri e documenti nella vita della chiesa$fDomenico Farias 210 $aSoveria Mannelli (Catanzaro)$cRubbettino$d1996 215 $a102 p.$cill.$d22 cm 225 1 $aCultura e vita$v1 610 0 $aCristianesimo e cultura 676 $a261$v21$zita 700 1$aFarias,$bDomenico$0231470 801 0$aIT$bUNINA$c20060428$gRICA$2UNIMARC 901 $aBK 912 $a990008316970403321 952 $a261 FAR 1$bBibl. 45801$fFLFBC 959 $aFLFBC 996 $aBiblioteca di Gerusalemme$9744322 997 $aUNINA LEADER 02530nam 2200577 a 450 001 9910450697803321 005 20200520144314.0 010 $a1-281-90576-3 010 $a9786611905767 010 $a981-270-336-5 035 $a(CKB)1000000000334279 035 $a(EBL)296230 035 $a(OCoLC)476064360 035 $a(SSID)ssj0000232546 035 $a(PQKBManifestationID)11226085 035 $a(PQKBTitleCode)TC0000232546 035 $a(PQKBWorkID)10214634 035 $a(PQKB)10606031 035 $a(MiAaPQ)EBC296230 035 $a(WSP)00000236 035 $a(PPN)140370005 035 $a(Au-PeEL)EBL296230 035 $a(CaPaEBR)ebr10174101 035 $a(EXLCZ)991000000000334279 100 $a20050411d2005 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aRandom walk in random and non-random environments$b[electronic resource] /$fPa?l Re?ve?sz 205 $a2nd ed. 210 $aHackensack, N.J. $cWorld Scientific$dc2005 215 $a1 online resource (397 p.) 300 $aDescription based upon print version of record. 311 $a981-256-361-X 320 $aIncludes bibliographical references (p. 357-373) and indexes. 327 $aPreface to the First Edition; Preface to the Second Edition; Contents; Introduction; I. SIMPLE SYMMETRIC RANDOM WALK IN Z1; II.SIMPLE SYMMETRIC RANDOM WALK IN Zd; III. RANDOM WALK IN RANDOM ENVIRONMENT; References; Author Index; Subject Index 330 $aThe simplest mathematical model of the Brownian motion of physics is the simple, symmetric random walk. This book collects and compares current results - mostly strong theorems which describe the properties of a random walk. The modern problems of the limit theorems of probability theory are treated in the simple case of coin tossing. Taking advantage of this simplicity, the reader is familiarized with limit theorems (especially strong ones) without the burden of technical tools and difficulties. An easy way of considering the Wiener process is also given, through the study of the random walk. 606 $aRandom walks (Mathematics) 608 $aElectronic books. 615 0$aRandom walks (Mathematics) 676 $a519.2/82 700 $aRe?ve?sz$b Pa?l$012634 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910450697803321 996 $aRandom walk in random and non-random environments$91491019 997 $aUNINA