LEADER 03492nam 2200673Ia 450 001 9910450600303321 005 20200520144314.0 010 $a0-19-756092-X 010 $a1-280-76079-6 010 $a9786610760794 010 $a0-19-535670-5 035 $a(CKB)1000000000404704 035 $a(EBL)430643 035 $a(OCoLC)502999871 035 $a(SSID)ssj0000295885 035 $a(PQKBManifestationID)11224395 035 $a(PQKBTitleCode)TC0000295885 035 $a(PQKBWorkID)10319993 035 $a(PQKB)11425283 035 $a(MiAaPQ)EBC430643 035 $a(StDuBDS)EDZ0002342141 035 $a(Au-PeEL)EBL430643 035 $a(CaPaEBR)ebr10351318 035 $a(CaONFJC)MIL76079 035 $a(EXLCZ)991000000000404704 100 $a19950330d1996 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aEvolutionary algorithms in theory and practice$b[electronic resource] $eevolution strategies, evolutionary programming, genetic algorithms /$fThomas Ba?ck 210 $aNew York $cOxford University Press$d1996 215 $a1 online resource (329 p.) 225 1 $aOxford scholarship online 300 $aPreviously issued in print: 1996. 311 $a0-19-509971-0 320 $aIncludes bibliographical references (p. 293-305) and index. 327 $aContents; Introduction; I: A COMPARISON OF EVOLUTIONARY ALGORITHMS; 1 Organic Evolution and Problem Solving; 1.1 Biological Background; 1.2 Evolutionary Algorithms and Artificial Intelligence; 1.3 Evolutionary Algorithms and Global Optimization; 1.4 Early Approaches; 1.5 Summary; 2 Specific Evolutionary Algorithms; 2.1 Evolution Strategies; 2.2 Evolutionary Programming; 2.3 Genetic Algorithms; 2.4 Summary; 3 Artificial Landscapes; 3.1 Sphere Model; 3.2 Step Function; 3.3 Ackley's Function; 3.4 Function after Fletcher and Powell; 3.5 Fractal Function; 3.6 Summary; 4 An Empirical Comparison 327 $aC.2 UsageC.3 Data Collection; D: The Multiprocessor Environment; D.1 The Transputer System; D.2 The Helios Operating System; E: Mathematical Symbols; Bibliography; Index; A; B; C; D; E; F; G; H; I; K; L; M; N; O; P; Q; R; S; T; U; V; W 330 8 $aComparing the three most prominent representatives of evolutionary algorithms - genetic algorithms, evolution strategies and evolutionary programming - this book examines the computational methods at the border between computer science and evolutionary biology. The algorithms are explained within a common framework, thereby clarifying the similarities and differences of these methods. The author also presents new results regarding the role of mutation and selection in genetic algorithms and uses a meta-evolutionary approach to confirm some of the theoretical results. 410 0$aOxford scholarship online. 606 $aGenetic algorithms 606 $aEvolution (Biology)$xMathematical models 606 $aEvolutionary programming (Computer science) 608 $aElectronic books. 615 0$aGenetic algorithms. 615 0$aEvolution (Biology)$xMathematical models. 615 0$aEvolutionary programming (Computer science) 676 $a005.1 676 $a006.3 700 $aBa?ck$b Thomas$f1963-$0351375 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910450600303321 996 $aEvolutionary algorithms in theory and practice$9374220 997 $aUNINA