LEADER 04029nam 22006972 450 001 9910450362103321 005 20151005020622.0 010 $a1-107-12879-X 010 $a1-280-41785-4 010 $a9786610417858 010 $a1-139-14635-1 010 $a0-511-18055-1 010 $a0-511-06675-9 010 $a0-511-06044-0 010 $a0-511-54678-5 010 $a0-511-30754-3 010 $a0-511-06888-3 035 $a(CKB)1000000000017975 035 $a(EBL)217716 035 $a(OCoLC)70723023 035 $a(SSID)ssj0000161444 035 $a(PQKBManifestationID)11160601 035 $a(PQKBTitleCode)TC0000161444 035 $a(PQKBWorkID)10198927 035 $a(PQKB)10158133 035 $a(UkCbUP)CR9780511546785 035 $a(MiAaPQ)EBC217716 035 $a(Au-PeEL)EBL217716 035 $a(CaPaEBR)ebr10069972 035 $a(CaONFJC)MIL41785 035 $a(EXLCZ)991000000000017975 100 $a20090508d2003|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeneralized Riemann problems in computational fluid dynamics /$fMatania Ben-Artzi and Joseph Falcovitz$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2003. 215 $a1 online resource (xvi, 349 pages) $cdigital, PDF file(s) 225 1 $aCambridge monographs on applied and computational mathematics ;$v11 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-17327-2 311 $a0-521-77296-6 320 $aIncludes bibliographical references (p. 337-343) and index. 327 $a1. Introduction -- I. Basic theory -- 2. Scalar conservation laws -- 3. The GRP method for scalar conservation laws -- 4. Systems of conservation laws -- 5. The Generalized Reimann Problem (GRP) for compressible fluid dynamics -- 6. Analytical and numerical treatment of fluid dynamical problems -- II. Numerical implementation -- 7. From the GRP algorithm to scientific computing -- 8. Geometric extensions -- 9. A physical extension: reacting flow -- 10. Wave interaction in a duct- a comparative study -- A. Entropy conditionsfor scalar conservation laws -- B. Convergence of godunov scheme -- C. Reimann solver for a y-law gas -- D. The MUSCL scheme. 330 $aNumerical simulation of compressible, inviscid time-dependent flow is a major branch of computational fluid dynamics. Its primary goal is to obtain accurate representation of the time evolution of complex flow patterns, involving interactions of shocks, interfaces, and rarefaction waves. The Generalized Riemann Problem (GRP) algorithm, developed by the authors for this purpose, provides a unifying 'shell' which comprises some of the most commonly used numerical schemes of this process. This 2003 monograph gives a systematic presentation of the GRP methodology, starting from the underlying mathematical principles, through basic scheme analysis and scheme extensions (such as reacting flow or two-dimensional flows involving moving or stationary boundaries). An array of instructive examples illustrates the range of applications, extending from (simple) scalar equations to computational fluid dynamics. Background material from mathematical analysis and fluid dynamics is provided, making the book accessible to both researchers and graduate students of applied mathematics, science and engineering. 410 0$aCambridge monographs on applied and computational mathematics ;$v11. 606 $aFluid dynamics 606 $aRiemann-Hilbert problems 615 0$aFluid dynamics. 615 0$aRiemann-Hilbert problems. 676 $a532/.05 700 $aBen-Artzi$b Matania$f1948-$0321325 702 $aFalcovitz$b Joseph$f1937- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910450362103321 996 $aGeneralized Riemann problems in computational fluid dynamics$92473962 997 $aUNINA