LEADER 03400nam 2200697 a 450 001 9910450182303321 005 20220113122823.0 010 $a1-281-86651-2 010 $a9786611866518 010 $a1-4237-0888-1 010 $a1-86094-548-1 035 $a(CKB)1000000000032770 035 $a(EBL)231532 035 $a(OCoLC)228114211 035 $a(SSID)ssj0000241523 035 $a(PQKBManifestationID)11200792 035 $a(PQKBTitleCode)TC0000241523 035 $a(PQKBWorkID)10298012 035 $a(PQKB)10903703 035 $a(MiAaPQ)EBC231532 035 $a(WSP)0000P308 035 $a(Au-PeEL)EBL231532 035 $a(CaPaEBR)ebr10082155 035 $a(CaONFJC)MIL186651 035 $a(OCoLC)815741915 035 $a(EXLCZ)991000000000032770 100 $a20040507d2004 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aScale-isometric polytopal graphs in hypercubes and cubic lattices$b[electronic resource] /$fMichel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin 210 $aLondon $cImperial College Press$dc2004 215 $a1 online resource (186 p.) 300 $aOn t.p. "on" is subscript. 311 $a1-86094-421-3 320 $aIncludes bibliographical references (p. 163-169) and index. 327 $aScale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n 4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives 327 $a11. Lattices, Bi-lattices and Tiles12. Small Polyhedra; 13. Bifaced Polyhedra; 14. Special l1-graphs; 15. Some Generalization of l1-embedding; Bibliography; Index 330 $aThis monograph identifies polytopes that are ""combinatorially l1-embeddable"", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to ""l2-prominent"" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography an 606 $aGraph theory 606 $aPolytopes 606 $aMetric spaces 606 $aEmbeddings (Mathematics) 608 $aElectronic books. 615 0$aGraph theory. 615 0$aPolytopes. 615 0$aMetric spaces. 615 0$aEmbeddings (Mathematics) 676 $a511/.5 700 $aDeza$b M.$f1934-$0906997 701 $aGrishukhin$b Viatcheslav$0906998 701 $aShtogrin$b Mikhail$0906999 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910450182303321 996 $aScale-isometric polytopal graphs in hypercubes and cubic lattices$92028850 997 $aUNINA