LEADER 02983nam 22006372 450 001 9910450101703321 005 20151005020621.0 010 $a1-107-11407-1 010 $a0-511-06583-3 010 $a1-283-32944-1 010 $a9786613329448 010 $a1-139-13387-X 010 $a1-139-12993-7 010 $a1-139-14549-5 010 $a0-511-05952-3 010 $a0-511-75635-6 010 $a0-511-06796-8 035 $a(CKB)1000000000030809 035 $a(EBL)217758 035 $a(OCoLC)228112927 035 $a(SSID)ssj0000145314 035 $a(PQKBManifestationID)11160582 035 $a(PQKBTitleCode)TC0000145314 035 $a(PQKBWorkID)10157437 035 $a(PQKB)11021624 035 $a(UkCbUP)CR9780511756351 035 $a(MiAaPQ)EBC217758 035 $a(Au-PeEL)EBL217758 035 $a(CaPaEBR)ebr10073533 035 $a(CaONFJC)MIL332944 035 $a(EXLCZ)991000000000030809 100 $a20100423d1999|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aElementary number theory in nine chapters /$fJames J. Tattersall$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d1999. 215 $a1 online resource (viii, 407 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-521-58531-7 311 $a0-521-58503-1 320 $aIncludes bibliographical references and index. 327 $aCover; Title; Copyright; Dedication; Contents; Preface; 1 The intriguing natural numbers; 2 Divisibility; 3 Prime numbers; 4 Perfect and amicable numbers; 5 Modular arithmetic; 6 Congruences of higher degree; 7 Cryptology; 8 Representations; 9 Partitions; Tables; Answers to selected exercises; Bibliography; Index 330 $aThis book is intended to serve as a one-semester introductory course in number theory. Throughout the book a historical perspective has been adopted and emphasis is given to some of the subject's applied aspects; in particular the field of cryptography is highlighted. At the heart of the book are the major number theoretic accomplishments of Euclid, Fermat, Gauss, Legendre, and Euler, and to fully illustrate the properties of numbers and concepts developed in the text, a wealth of exercises have been included. It is assumed that the reader will have 'pencil in hand' and ready access to a calculator or computer. For students new to number theory, whatever their background, this is a stimulating and entertaining introduction to the subject. 606 $aNumber theory 615 0$aNumber theory. 676 $a512/.72 700 $aTattersall$b James J$g(James Joseph),$f1941-$062406 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910450101703321 996 $aElementary number theory in nine chapters$9374646 997 $aUNINA LEADER 01783oam 2200529 450 001 9910706803603321 005 20180323091002.0 035 $a(CKB)5470000002459436 035 $a(OCoLC)896810572 035 $a(OCoLC)995470000002459436 035 $a(EXLCZ)995470000002459436 100 $a20141123d1977 ua 0 101 0 $aeng 135 $aurmn||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aStochastic analysis of particle movement over a dune bed /$fby Baum K. Lee and Harvey E. Jobson 210 1$aWashington :$cUnited States Department of the Interior, Geological Survey,$d1977. 215 $a1 online resource (vi, 72 pages) $cillustrations 225 1 $aGeological Survey professional paper ;$v1040 300 $aTitle from title screen (viewed October 6, 2014). 320 $aIncludes bibliographical references (pages 41-42). 606 $aSand dunes 606 $aSediment transport$xMathematical models 606 $aStochastic processes 606 $aSand dunes$2fast 606 $aSediment transport$xMathematical models$2fast 606 $aStochastic processes$2fast 615 0$aSand dunes. 615 0$aSediment transport$xMathematical models. 615 0$aStochastic processes. 615 7$aSand dunes. 615 7$aSediment transport$xMathematical models. 615 7$aStochastic processes. 700 $aLee$b Baum K.$01400148 702 $aJobson$b Harvey E. 712 02$aGeological Survey (U.S.), 801 0$bCOP 801 1$bCOP 801 2$bOCLCO 801 2$bOCLCF 801 2$bGPO 906 $aBOOK 912 $a9910706803603321 996 $aStochastic analysis of particle movement over a dune bed$93466554 997 $aUNINA