LEADER 03351nam 22006972 450 001 9910450042303321 005 20151005020622.0 010 $a1-107-13745-4 010 $a1-280-43672-7 010 $a9786610436729 010 $a0-511-17917-0 010 $a1-139-14905-9 010 $a0-511-05602-8 010 $a0-511-30622-9 010 $a0-511-54282-8 010 $a0-511-07081-0 035 $a(CKB)1000000000018160 035 $a(EBL)218217 035 $a(OCoLC)57254213 035 $a(SSID)ssj0000099636 035 $a(PQKBManifestationID)11108874 035 $a(PQKBTitleCode)TC0000099636 035 $a(PQKBWorkID)10014376 035 $a(PQKB)10759110 035 $a(UkCbUP)CR9780511542824 035 $a(MiAaPQ)EBC218217 035 $a(PPN)144866463 035 $a(Au-PeEL)EBL218217 035 $a(CaPaEBR)ebr10070294 035 $a(CaONFJC)MIL43672 035 $a(EXLCZ)991000000000018160 100 $a20090505d2003|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAffine Hecke algebras and orthogonal polynomials /$fI.G. Macdoald$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2003. 215 $a1 online resource (ix, 175 pages) $cdigital, PDF file(s) 225 1 $aCambridge tracts in mathematics ;$v157 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a0-511-06235-4 311 $a0-521-82472-9 320 $aIncludes bibliographical references (p. 170-172) and index. 327 $aIntroduction -- Affine root systems -- The extended affine Weyl group -- The braid group -- The affine Hecke algebra -- Orthogonal polynomials -- The rank 1 case -- Bibliography -- Index. 330 $aIn recent years there has developed a satisfactory and coherent theory of orthogonal polynomials in several variables, attached to root systems, and depending on two or more parameters. These polynomials include as special cases: symmetric functions; zonal spherical functions on real and p-adic reductive Lie groups; the Jacobi polynomials of Heckman and Opdam; and the Askey-Wilson polynomials, which themselves include as special or limiting cases all the classical families of orthogonal polynomials in one variable. This book, first published in 2003, is a comprehensive and organised account of the subject aims to provide a unified foundation for this theory, to which the author has been a principal contributor. It is an essentially self-contained treatment, accessible to graduate students familiar with root systems and Weyl groups. The first four chapters are preparatory to Chapter V, which is the heart of the book and contains all the main results in full generality. 410 0$aCambridge tracts in mathematics ;$v157. 517 3 $aAffine Hecke Algebras & Orthogonal Polynomials 606 $aHecke algebras 606 $aOrthogonal polynomials 615 0$aHecke algebras. 615 0$aOrthogonal polynomials. 676 $a512/.55 700 $aMacdonald$b I. G$g(Ian Grant),$0885552 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910450042303321 996 $aAffine Hecke algebras and orthogonal polynomials$92449356 997 $aUNINA