LEADER 04691nam 2200529 450 001 9910438308503321 005 20221206101426.0 010 $a0-7680-8726-0 010 $a0-7680-8297-8 010 $a1-5231-0631-X 024 7 $a10.4271/pt-177 035 $a(CKB)3810000000287822 035 $a(MiAaPQ)EBC5341835 035 $a(CaBNVSL)mat08503523 035 $a(IDAMS)0b000064887634e8 035 $a(IEEE)8503523 035 $a(EXLCZ)993810000000287822 100 $a20181229d2016 uy 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAircraft thermal management $esystems architectures /$fby Mark F. Ahlers 210 1$aWarrendale, Pennsylvania (400 Commonwealth Dr., Wallendale PA USA) :$cSociety of Automotive Engineers,$d2016. 210 2$a[Piscataqay, New Jersey] :$cIEEE Xplore,$d[2016] 215 $a1 online resource (v, 99 pages) $cillustrations 225 1 $aPT ;$v177 225 1 $aSociety of Automotive Engineers. Electronic publications 311 $a0-7680-8296-X 320 $aIncludes bibliographical references. 327 $a1. Aircraft thermal management-heat sink challenge (2014-01-2193) / Dooley, M., Lui, N., Newman, R., and Lui, C -- 2. Integrated aircraft thermal management & power generation: Reconfiguration of a closed loop air cycle system as a Brayton cycle gas generator to support auxiliary electric power generation (2014-01-2192) / Abolmoali, P., Parrilla, J., and Hamed, A -- 3. Aircraft integration challenges and opportunities for distributed intelligent control, power, thermal management, diagnostic and prognostic systems (2014-01-2161) / Behbahani, A., Von Moll, A., Zeller, R., and Ordo, J -- 4. Thermal management investigations for fuel cell systems on-board commercial aircraft (2013-01-2274) / Vredenborg, E., and Thielecke, F -- 5. Power and thermal management for future aircraft (2013-01-2273) / Ganev, E., and Koerner, M -- 6. A highly stable two-phase thermal management system for aircraft (2012-01-2186) / Chen, W., Fogg, D., Izenson, M., and Kurwitz, C -- 7. Thermal management and power generation for directed energy weapons (2010-01-1781) / Patel, V. P., Koerner, M., Loeffelholz, D -- 8. Comparative analysis of thermal management architectures to address evolving thermal requirements of aircraft systems (2008-01-2905) / Homitz, J., Scaringe, R., Cole, G., Fleming, A., et al -- 9. Aircraft thermal management using loop heat pipes: Experimental simulation of high acceleration environments using the centrifuge table test bed (2006-01-3066) / Fleming, A., Leland, Q., Yerkes, K., Elston, L., et al -- 10. Evaluation of a vapor-compression thermal management system for reliability while operating under thermal transients (2010-01-1733) / Homitz, J., Scaringe, R., and Cole, G. 330 $aAircraft thermal management (ATM) is increasingly important to the design and operation of commercial and military aircraft due to rising heat loads from expanded electronic functionality, electric systems architectures, and the greater temperature sensitivity of composite materials compared to metallic structures. It also impacts engine fuel consumption associated with removing waste heat from an aircraft. More recently the advent of more electric architectures on aircraft, such as the Boeing 787, has led to increased interest in the development of more efficient ATM architectures by the commercial airplane manufacturers. The ten papers contained in this book describe aircraft thermal management system architectures designed to minimize airplane performance impacts which could be applied to commercial or military aircraft. Additional information on Aircraft Thermal Management System Architectures is available from SAE AIR 5744 issued by the AC-9 Aircraft Environmental System Committee and the SAE book Aircraft Thermal Management Integrated Analysis (PT-178). SAE AIR 5744 defines the discipline of aircraft thermal management system engineering while Aircraft Thermal Management Integrated Analysis discusses approaches to computer simulation of the simultaneous operation of all systems affecting thermal management on an aircraft. 410 0$aPT (Series) (Warrendale, Pa.) ;$v177. 606 $aAerothermodynamics 606 $aAerodynamic heating 615 0$aAerothermodynamics. 615 0$aAerodynamic heating. 676 $a629.134 700 $aAhlers$b Mark F.$01244336 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910438308503321 996 $aAircraft thermal management$92886629 997 $aUNINA LEADER 01659nam 2200493 450 001 9910814674403321 005 20200520144314.0 010 0 $a9781118770320 010 0 $a1118770323 035 $a(MiAaPQ)EBC7104060 035 $a(CKB)24989782400041 035 $a(MiAaPQ)EBC1574360 035 $a(Au-PeEL)EBL1574360 035 $a(CaPaEBR)ebr10881248 035 $a(CaONFJC)MIL615346 035 $a(OCoLC)854761798 035 $a(EXLCZ)9924989782400041 100 $a20140619h20142014 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aPhysicochemical and biomimetic properties in drug discovery $echromatographic techniques for lead optimization /$fKlara Valko 210 1$aHoboken, New Jersey :$cWiley,$d2014. 210 4$d2014 215 $a1 online resource (453 pages) $ccolor illustrations, photographs 320 $aIncludes bibliographical references at the end of each chapters and index. 606 $aDrug development$xStatistical methods 606 $aChromatographic analysis 606 $aClinical trials$xStatistical methods 606 $aPharmaceutical biotechnology 615 0$aDrug development$xStatistical methods. 615 0$aChromatographic analysis. 615 0$aClinical trials$xStatistical methods. 615 0$aPharmaceutical biotechnology. 676 $a615.1/9 700 $aValko$b Klara$01140130 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 912 $a9910814674403321 996 $aPhysicochemical and biomimetic properties in drug discovery$92677804 997 $aUNINA