LEADER 03426nam 22006135 450 001 9910438160003321 005 20200630155842.0 010 $a3-319-01288-6 024 7 $a10.1007/978-3-319-01288-9 035 $a(CKB)3710000000024335 035 $a(SSID)ssj0001049498 035 $a(PQKBManifestationID)11678732 035 $a(PQKBTitleCode)TC0001049498 035 $a(PQKBWorkID)11018930 035 $a(PQKB)10424059 035 $a(DE-He213)978-3-319-01288-9 035 $a(MiAaPQ)EBC3107016 035 $a(PPN)176103929 035 $a(EXLCZ)993710000000024335 100 $a20131001d2013 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aInvariance Entropy for Deterministic Control Systems $eAn Introduction /$fby Christoph Kawan 205 $a1st ed. 2013. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2013. 215 $a1 online resource (XXII, 270 p. 2 illus., 1 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2089 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-01287-8 327 $aBasic Properties of Control Systems -- Introduction to Invariance Entropy -- Linear and Bilinear Systems -- General Estimates -- Controllability, Lyapunov Exponents, and Upper Bounds -- Escape Rates and Lower Bounds -- Examples -- Notation -- Bibliography -- Index. 330 $aThis monograph provides an introduction to the concept of invariance entropy, the central motivation of which lies in the need to deal with communication constraints in networked control systems. For the simplest possible network topology, consisting of one controller and one dynamical system connected by a digital channel, invariance entropy provides a measure for the smallest data rate above which it is possible to render a given subset of the state space invariant by means of a symbolic coder-controller pair. This concept is essentially equivalent to the notion of topological feedback entropy introduced by Nair, Evans, Mareels and Moran (Topological feedback entropy and nonlinear stabilization. IEEE Trans. Automat. Control 49 (2004), 1585?1597). The book presents the foundations of a theory which aims at finding expressions for invariance entropy in terms of dynamical quantities such as Lyapunov exponents. While both discrete-time and continuous-time systems are treated, the emphasis lies on systems given by differential equations. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2089 606 $aDynamics 606 $aErgodic theory 606 $aSystem theory 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 615 0$aDynamics. 615 0$aErgodic theory. 615 0$aSystem theory. 615 14$aDynamical Systems and Ergodic Theory. 615 24$aSystems Theory, Control. 676 $a515.42 700 $aKawan$b Christoph$4aut$4http://id.loc.gov/vocabulary/relators/aut$0479678 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438160003321 996 $aInvariance entropy for deterministic control systems$9258671 997 $aUNINA