LEADER 01080nam--2200385---450- 001 990005860490203316 005 20130620084526.0 010 $a978-88-95039-00-8 035 $a000586049 035 $aUSA01000586049 035 $a(ALEPH)000586049USA01 035 $a000586049 100 $a20130620d2007----km-y0itay50------ba 101 $aita 102 $aIT 105 $a||||||||001yy 200 1 $aMateriali per un corso di fund raising$fValerio Melandri 205 $a2. ed. 210 $aForli$cPhilanthropy$d2007 215 $aXI, 370 p.$d24 cm 225 2 $aFare fund raising$v1 410 0$12001$aFare fund raising$v1 454 1$12001 461 1$1001-------$12001 606 0 $aEnti senza scopo di lucro$xFinanziamenti 676 $a658.15224 700 1$aMELANDRI,$bValerio$0479700 801 0$aIT$bsalbc$gISBD 912 $a990005860490203316 951 $aP11/825$b.... DISTRA 959 $aBK 969 $aDISTRA 979 $aGILIBERTI$b10$c20130620$lUSA01$h0845 996 $aMateriali per un corso di fund raising$91086386 997 $aUNISA LEADER 04498nam 22006735 450 001 9910438153903321 005 20200705232133.0 010 $a1-4614-6998-8 024 7 $a10.1007/978-1-4614-6998-8 035 $a(CKB)2670000000393917 035 $a(EBL)1317483 035 $a(OCoLC)870244208 035 $a(SSID)ssj0000935476 035 $a(PQKBManifestationID)11575590 035 $a(PQKBTitleCode)TC0000935476 035 $a(PQKBWorkID)10953081 035 $a(PQKB)10725926 035 $a(DE-He213)978-1-4614-6998-8 035 $a(MiAaPQ)EBC6312102 035 $a(MiAaPQ)EBC1317483 035 $a(Au-PeEL)EBL1317483 035 $a(CaPaEBR)ebr10970513 035 $a(PPN)170488268 035 $a(EXLCZ)992670000000393917 100 $a20130618d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAlgebraic Combinatorics $eWalks, Trees, Tableaux, and More /$fby Richard P. Stanley 205 $a1st ed. 2013. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2013. 215 $a1 online resource (225 p.) 225 1 $aUndergraduate Texts in Mathematics,$x0172-6056 300 $aDescription based upon print version of record. 311 $a1-4899-9285-5 311 $a1-4614-6997-X 320 $aIncludes bibliographical references (pages [213]-217) and index. 327 $aPreface -- Notation.- 1. Walks in graphs -- 2. Cubes and the Radon transform -- 3. Random walks -- 4. The Sperner property -- 5. Group actions on boolean algebras -- 6. Young diagrams and q-binomial coefficients -- 7. Enumeration under group action -- 8. A glimpse of Young tableaux -- Appendix. The RSK algorithm -- Appendix. Plane partitions -- 9. The Matrix?Tree Theorem -- Appendix. Three elegant combinatorial proofs -- 10. Eulerian diagraphs and oriented trees -- 11. Cycles, bonds, and electrical networks -- 12. Miscellaneous gems of algebraic combinatorics -- Hints -- References. 330 $aWritten by one of the foremost experts in the field, Algebraic Combinatorics is a unique undergraduate textbook that will prepare the next generation of pure and applied mathematicians. The combination of the author?s extensive knowledge of combinatorics and classical and practical tools from algebra will inspire motivated students to delve deeply into the fascinating interplay between algebra and combinatorics. Readers will be able to apply their newfound knowledge to mathematical, engineering, and business models.   The text is primarily intended for use in a one-semester advanced undergraduate course in algebraic combinatorics, enumerative combinatorics, or graph theory.  Prerequisites include a basic knowledge of linear algebra over a field, existence of finite fields, and rudiments of group theory.  The topics in each chapter build on one another and include extensive problem sets as well as hints to selected exercises. Key topics include walks on graphs, cubes and the Radon transform, the Matrix?Tree Theorem, de Bruijn sequences, the Erd?s-Moser conjecture, electrical networks, and the Sperner property. There are also three appendices on purely enumerative aspects of combinatorics related to the chapter material: the RSK algorithm, plane partitions, and the enumeration of labeled trees.   Richard Stanley is currently professor of Applied Mathematics at the Massachusetts Institute of Technology. Stanley has received several awards including the George Pólya Prize in applied combinatorics, the Guggenheim Fellowship, and the Leroy P. Steele Prize for mathematical exposition. Also by the author: Combinatorics and Commutative Algebra, Second Edition, © Birkhäuser. 410 0$aUndergraduate Texts in Mathematics,$x0172-6056 606 $aCombinatorial analysis 606 $aGraph theory 606 $aCombinatorics$3https://scigraph.springernature.com/ontologies/product-market-codes/M29010 606 $aGraph Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M29020 615 0$aCombinatorial analysis. 615 0$aGraph theory. 615 14$aCombinatorics. 615 24$aGraph Theory. 676 $a511/.6 700 $aStanley$b Richard P$4aut$4http://id.loc.gov/vocabulary/relators/aut$055697 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438153903321 996 $aAlgebraic combinatorics$9836554 997 $aUNINA