LEADER 00963nam0-22003011i-450- 001 990007200950403321 005 20021010 035 $a000720095 035 $aFED01000720095 035 $a(Aleph)000720095FED01 035 $a000720095 100 $a20021010d--------km-y0itay50------ba 101 0 $aita 200 1 $a<>droit au travail entre histoire et utopie$e1789-1848-1989$ede la repression de la mendicite' a l'allocationuniverselle$fFernand Tanghe. 210 $aBruxelles$cFacultes Universitaires Saint-Louis$eFlorence$cInstitut universitaire europeen$d1989. 215 $a242 p.$d23 cm 225 1 $aTravaux et recherches$v16 676 $a340 676 $a344 700 1$aTanghe,$bFernand$0263486 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990007200950403321 952 $aF-I-86$b1432 dip.$fDDRC 959 $aDDRC 996 $aDroit au travail entre histoire et utopie$9689066 997 $aUNINA DB $aGEN01 LEADER 04227nam 2200649Ia 450 001 9910438148803321 005 20200520144314.0 010 $a1-283-91000-4 010 $a1-4614-5940-0 024 7 $a10.1007/978-1-4614-5940-8 035 $a(CKB)2670000000308647 035 $a(EBL)1082041 035 $a(OCoLC)821020914 035 $a(SSID)ssj0000811615 035 $a(PQKBManifestationID)11528308 035 $a(PQKBTitleCode)TC0000811615 035 $a(PQKBWorkID)10865277 035 $a(PQKB)11612165 035 $a(DE-He213)978-1-4614-5940-8 035 $a(MiAaPQ)EBC1082041 035 $z(PPN)258852135 035 $a(PPN)168304309 035 $a(EXLCZ)992670000000308647 100 $a20121212d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPlasticity $emathematical theory and numerical analysis /$fWeimin Han, B. Daya Reddy 205 $a2nd ed. 210 $aNew York $cSpringer$dc2013 215 $a1 online resource (427 p.) 225 1 $aInterdisciplinary applied mathematics ;$v9 300 $aDescription based upon print version of record. 311 $a1-4899-9594-3 311 $a1-4614-5939-7 320 $aIncludes bibliographical references and index. 327 $aPreface to the Second Edition -- Preface to the First Edition.-Preliminaries -- Continuum Mechanics and Linearized Elasticity -- Elastoplastic Media -- The Plastic Flow Law in a Convex-Analytic Setting -- Basics of Functional Analysis and Function Spaces -- Variational Equations and Inequalities -- The Primal Variational Problem of Elastoplasticity -- The Dual Variational Problem of Classical Elastoplasticity -- Introduction to Finite Element Analysis -- Approximation of Variational Problems -- Approximations of the Abstract Problem -- Numerical Analysis of the Primal Problem -- References -- Index.-. 330 $aThis book focuses on the theoretical aspects of small strain theory of elastoplasticity with hardening assumptions. It provides a comprehensive and unified treatment of the mathematical theory and numerical analysis. It is divided into three parts, with the first part providing a detailed introduction to plasticity, the second part covering the mathematical analysis of the elasticity problem, and the third part devoted to error analysis of various semi-discrete and fully discrete approximations for variational formulations of the elastoplasticity. This revised and expanded edition includes material on single-crystal and strain-gradient plasticity. In addition, the entire book has been revised to make it more accessible to readers who are actively involved in computations but less so in numerical analysis. Reviews of earlier edition: ?The authors have written an excellent book which can be recommended for specialists in plasticity who wish to know more about the mathematical theory, as well as those with a background in the mathematical sciences who seek a self-contained account of the mechanics and mathematics of plasticity theory.? (ZAMM, 2002) ?In summary, the book represents an impressive comprehensive overview of the mathematical approach to the theory and numerics of plasticity. Scientists as well as lecturers and graduate students will find the book very useful as a reference for research or for preparing courses in this field.? (Technische Mechanik) "The book is professionally written and will be a useful reference to researchers and students interested in mathematical and numerical problems of plasticity. It represents a major contribution in the area of continuum mechanics and numerical analysis." (Math Reviews). 410 0$aInterdisciplinary applied mathematics ;$vv. 9. 606 $aPlasticity 606 $aNumerical analysis 606 $aElastoplasticity 615 0$aPlasticity. 615 0$aNumerical analysis. 615 0$aElastoplasticity. 676 $a531.385 700 $aHan$b Weimin$0287589 701 $aReddy$b B. Dayanand$f1953-$0447733 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438148803321 996 $aPlasticity$94204723 997 $aUNINA