LEADER 03509nam 2200613 a 450 001 9910438142903321 005 20250609112026.0 010 $a1-4419-0236-8 024 7 $a10.1007/978-1-4419-0236-8 035 $a(CKB)2670000000278617 035 $a(EBL)1156105 035 $a(OCoLC)831115640 035 $a(SSID)ssj0000798929 035 $a(PQKBManifestationID)11429296 035 $a(PQKBTitleCode)TC0000798929 035 $a(PQKBWorkID)10754961 035 $a(PQKB)10726480 035 $a(DE-He213)978-1-4419-0236-8 035 $a(MiAaPQ)EBC1156105 035 $a(PPN)168290863 035 $a(MiAaPQ)EBC4071370 035 $a(EXLCZ)992670000000278617 100 $a20120810d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aMultidimensional data visualization $emethods and applications /$fGintautas Dzemyda, Olga Kurasova, Julius Zilinskas 205 $a1st ed. 2013. 210 $aNew York $cSpringer$d2013 215 $a1 online resource (261 p.) 225 0$aSpringer optimization and its applications ;$vv. 75 300 $aDescription based upon print version of record. 311 08$a1-4899-9000-3 311 08$a1-4419-0235-X 320 $aIncludes bibliographical references and index. 327 $aPreface -- 1. Multidimensional Data and the Concept of Visualization -- 2. Strategies for Multidimensional Data Visualization -- 3. Optimization-Based Visualization -- 4. Combining Multidimensional Scaling with Artificial Neural Networks -- 5. Applications of Visualizations -- A. Test Data Sets -- References -- Index. 330 $aThe goal of this book is to present a variety of methods used  in multidimensional data visualization. The emphasis is placed on new research results and trends in this field, including optimization, artificial neural networks, combinations of algorithms, parallel computing, different proximity measures, nonlinear manifold learning,  and more. Many of the applications presented allow us to discover the obvious advantages of visual data mining?it is much easier for a decision maker to detect or extract useful information from graphical representation of data than from raw numbers. The fundamental idea of visualization is to provide data in some visual form that lets humans  understand them, gain insight into the data, draw conclusions, and directly influence the process of decision making. Visual data mining is a field where human participation is integrated in the data analysis process; it covers data visualization and graphical presentation of information. Multidimensional Data Visualization is intended for scientists and researchers in any field of study where complex and multidimensional data must be visually represented. It may also serve as a useful research supplement for PhD students in operations research, computer science, various fields of engineering,  as well as natural and social sciences. 410 0$aSpringer Optimization and Its Applications,$x1931-6828 ;$v75 606 $aMultimedia systems 615 0$aMultimedia systems. 676 $a006.6 676 $a006.693 700 $aDzemyda$b Gintautas$01063020 701 $aKurasova$b Olga$01757963 701 $aZilinskas$b Julius$0721722 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438142903321 996 $aMultidimensional data visualization$94195999 997 $aUNINA