LEADER 03128nam 2200661 a 450 001 9910438142803321 005 20250609111432.0 010 $a1-283-64047-3 010 $a3-642-14200-1 024 7 $a10.1007/978-3-642-14200-0 035 $a(CKB)3400000000086162 035 $a(EBL)1030589 035 $a(OCoLC)812017697 035 $a(SSID)ssj0000766972 035 $a(PQKBManifestationID)11414486 035 $a(PQKBTitleCode)TC0000766972 035 $a(PQKBWorkID)10739157 035 $a(PQKB)10051147 035 $a(DE-He213)978-3-642-14200-0 035 $a(MiAaPQ)EBC1030589 035 $a(PPN)16830824X 035 $a(MiAaPQ)EBC4071649 035 $a(MiAaPQ)EBC6220414 035 $a(EXLCZ)993400000000086162 100 $a20120810d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aContract theory in continuous-time models /$fJaksa Cvitanic, Jianfeng Zhang 205 $a1st ed. 2013. 210 $aNew York $cSpringer$d2013 215 $a1 online resource (257 p.) 225 0$aSpringer finance 300 $aDescription based upon print version of record. 311 08$a3-642-43352-9 311 08$a3-642-14199-4 320 $aIncludes bibliographical references and index. 327 $apt. 1. Introduction -- pt. 2. First best : risk sharing under full information -- pt. 3. Second best : contracting under hidden action-the case of moral hazard -- pt. 4. Third best : contracting under hidden action and hidden type-the case of moral hazard and adverse selection -- pt. 5. Backward SDEs and forward-backward SDEs. 330 $aIn recent years there has been a significant increase of interest in continuous-time Principal-Agent models, or contract theory, and their applications. Continuous-time models provide a powerful and elegant framework for solving stochastic optimization problems of finding the optimal contracts between two parties, under various assumptions on the information they have access to, and the effect they have on the underlying "profit/loss" values. This monograph surveys recent results of the theory in a systematic way, using the approach of the so-called Stochastic Maximum Principle, in models driven by Brownian Motion. Optimal contracts are characterized via a system of Forward-Backward Stochastic Differential Equations. In a number of interesting special cases these can be solved explicitly, enabling derivation of many qualitative economic conclusions. 410 0$aSpringer Finance,$x2195-0687 606 $aContracts$xMathematical models 606 $aContracts$xPhilosophy 606 $aContracts$xMethodology 615 0$aContracts$xMathematical models. 615 0$aContracts$xPhilosophy. 615 0$aContracts$xMethodology. 676 $a332.01519233 700 $aCvitanic$b Jaksa$0285404 701 $aZhang$b Jianfeng$0767387 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438142803321 996 $aContract theory in continuous-time models$94194644 997 $aUNINA