LEADER 04417nam 22008895 450 001 9910438140403321 005 20200701031822.0 010 $a1-4614-4538-8 024 7 $a10.1007/978-1-4614-4538-8 035 $a(CKB)2670000000308947 035 $a(EBL)994204 035 $a(OCoLC)821265748 035 $a(SSID)ssj0000813281 035 $a(PQKBManifestationID)11436056 035 $a(PQKBTitleCode)TC0000813281 035 $a(PQKBWorkID)10768288 035 $a(PQKB)11197429 035 $a(DE-He213)978-1-4614-4538-8 035 $a(MiAaPQ)EBC994204 035 $a(MiAaPQ)EBC6312579 035 $a(PPN)168300575 035 $a(EXLCZ)992670000000308947 100 $a20121116d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCalculus Without Derivatives /$fby Jean-Paul Penot 205 $a1st ed. 2013. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Springer,$d2013. 215 $a1 online resource (540 p.) 225 1 $aGraduate Texts in Mathematics,$x0072-5285 ;$v266 300 $aDescription based upon print version of record. 311 $a1-4899-8942-0 311 $a1-4614-4537-X 320 $aIncludes bibliographical references (pages [479]-517) and index. 327 $aPreface -- 1 Metric and Topological Tools -- 2 Elements of Differential Calculus -- 3 Elements of Convex Analysis -- 4 Elementary and Viscosity Subdifferentials -- 5 Circa-Subdifferentials, Clarke Subdifferentials -- 6 Limiting Subdifferentials -- 7 Graded Subdifferentials, Ioffe Subdifferentials -- References -- Index . 330 $aCalculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization problems. Whereas most books on this subject focus on a particular theory, this text takes a general approach including all main theories. In order to be self-contained, the book includes three chapters of preliminary material, each of which can be used as an independent course if needed. The first chapter deals with metric properties, variational principles, decrease principles, methods of error bounds, calmness and metric regularity. The second one presents the classical tools of differential calculus and includes a section about the calculus of variations. The third contains a clear exposition of convex analysis. 410 0$aGraduate Texts in Mathematics,$x0072-5285 ;$v266 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aFunctions of real variables 606 $aMathematical optimization 606 $aSystem theory 606 $aFunctional analysis 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aReal Functions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12171 606 $aOptimization$3https://scigraph.springernature.com/ontologies/product-market-codes/M26008 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aApplications of Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M13003 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aFunctions of real variables. 615 0$aMathematical optimization. 615 0$aSystem theory. 615 0$aFunctional analysis. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 14$aAnalysis. 615 24$aReal Functions. 615 24$aOptimization. 615 24$aSystems Theory, Control. 615 24$aFunctional Analysis. 615 24$aApplications of Mathematics. 676 $a515 700 $aPenot$b Jean-Paul$4aut$4http://id.loc.gov/vocabulary/relators/aut$0521797 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438140403321 996 $aCalculus without derivatives$9838047 997 $aUNINA