LEADER 03357nam 2200673 a 450 001 9910438140103321 005 20200520144314.0 010 $a1-283-63084-2 010 $a9786613943293 010 $a3-642-31090-7 024 7 $a10.1007/978-3-642-31090-4 035 $a(CKB)2670000000250291 035 $a(EBL)1030213 035 $a(OCoLC)808814491 035 $a(SSID)ssj0000746087 035 $a(PQKBManifestationID)11495903 035 $a(PQKBTitleCode)TC0000746087 035 $a(PQKBWorkID)10860555 035 $a(PQKB)10140322 035 $a(DE-He213)978-3-642-31090-4 035 $a(MiAaPQ)EBC1030213 035 $a(PPN)16831844X 035 $a(EXLCZ)992670000000250291 100 $a20120817d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPoisson structures /$fCamille Laurent-Gengoux, Anne Pichereau, Pol Vanhaecke 205 $a1st ed. 210 $aNew York $cSpringer$d2013 215 $a1 online resource (469 p.) 225 0$aGrundlehren der mathematischen Wissenschaften,$x0072-7830 ;$v347 300 $aDescription based upon print version of record. 311 $a3-642-43283-2 311 $a3-642-31089-3 320 $aIncludes bibliographical references and index. 327 $apt. 1. Theoretical background -- pt. 2. Examples -- pt. 3. Applications. 330 $aPoisson structures appear in a large variety of contexts, ranging from string theory, classical/quantum mechanics and differential geometry to abstract algebra, algebraic geometry and representation theory. In each one of these contexts, it turns out that the Poisson structure is not a theoretical artifact, but a key element which, unsolicited, comes along with the problem that is investigated, and its delicate properties are decisive for the solution to the problem in nearly all cases. Poisson Structures is the first book that offers a comprehensive introduction to the theory, as well as an overview of the different aspects of Poisson structures. The first part covers solid foundations, the central part consists of a detailed exposition of the different known types of Poisson structures and of the (usually mathematical) contexts in which they appear, and the final part is devoted to the two main applications of Poisson structures (integrable systems and deformation quantization). The clear structure of the book makes it adequate for readers who come across Poisson structures in their research or for graduate students or advanced researchers who are interested in an introduction to the many facets and applications of Poisson structures. 410 0$aGrundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics,$x0072-7830 ;$v347 606 $aPoisson manifolds 606 $aLie algebras 606 $aGeometry, Differential 615 0$aPoisson manifolds. 615 0$aLie algebras. 615 0$aGeometry, Differential. 676 $a512.1 676 $a516.3/6 700 $aLaurent-Gengoux$b Camille$0477772 701 $aPichereau$b Anne$0518472 701 $aVanhaecke$b Pol$061070 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438140103321 996 $aPoisson structures$9841273 997 $aUNINA