LEADER 02267nam 2200433Ia 450 001 996389325103316 005 20210104172006.0 035 $a(CKB)4940000000095009 035 $a(EEBO)2240866290 035 $a(OCoLC)ocm71305235e 035 $a(OCoLC)71305235 035 $a(EXLCZ)994940000000095009 100 $a20060912d1616 uy 0 101 0 $aeng 135 $aurbn||||a|bb| 200 12$aA dictionarie in English and Latine;$b[electronic resource] $edeuised for the capacity of children, and young beginners. /$fAt first set foorth by M. Withals, with phrases both rythmical and proverbial: recognized, by Dr. Euans; after by Abr. Fleming: and then by William Clerk. ; And now at this last impression enlarged with an encrease of words, sentences, phrases, epigrams, histories, poeticall fictions, and alphabeticall prouerbs; with a compendious nomenclator newly added at the end. All composed for the ease, profit, and delight of those that desire instruction, and the better perfection of the Latine tongue. 210 $aPrinted at London $cby Thomas Purfoot.$d1616. 215 $a[14], [623] p 300 $aOriginally published in 1553 as: A shorte dictionarie for yonge begynners--Cf. STC (2nd ed.) 25874. 300 $aSignatures: A(-A?)?-2R?. 300 $aSignatures: [par.]? (1st leaf blank?) A? B-2H? I? 2K-4S? 4T? 4V-4Y? 4Z? 4Z? [sic] 4Z? (- 1 leaf?) 5A-5T? 5V?. 300 $aImperfect: stained and faded; last two leaves torn, with loss of page numbers. 300 $aReproduction of original in: National Library of Wales. 330 $aeebo-0098 606 $aLatin language$vDictionaries$xEnglish$vEarly works to 1800 606 $aEnglish language$vDictionaries$xLatin$vEarly works to 1800 615 0$aLatin language$xEnglish 615 0$aEnglish language$xLatin 700 $aWithals$b John$01004369 701 $aEvans$b Lewis$ffl. 1574.$01001767 701 $aFleming$b Abraham$f1552?-1607.$01002473 701 $aClerk$b William$ffl. 1599-1608.$01004370 702 $aPurfoot$b Thomas$fd. 1639 or 40.$4prt 801 0$bUMI 801 1$bUMI 906 $aBOOK 912 $a996389325103316 996 $aA dictionarie in English and Latine$92352780 997 $aUNISA LEADER 02901nam 2200505Ia 450 001 9910438135703321 005 20200520144314.0 010 $a1-4614-6657-1 024 7 $a10.1007/978-1-4614-6657-4 035 $a(OCoLC)849513502 035 $a(MiFhGG)GVRL6YJG 035 $a(CKB)2560000000103548 035 $a(MiAaPQ)EBC1317402 035 $a(EXLCZ)992560000000103548 100 $a20130411d2013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aElliptic curves and arithmetic invariants /$fHaruzo Hida 205 $a1st ed. 2013. 210 $aNew York $cSpringer$d2013 215 $a1 online resource (xviii, 449 pages) $cillustrations 225 0 $aSpringer Monographs in Mathematics 300 $a"ISSN: 1439-7382." 311 $a1-4899-9092-5 311 $a1-4614-6656-3 320 $aIncludes bibliographical references and index. 327 $a1 Non-triviality of Arithmetic Invariants -- 2 Elliptic Curves and Modular Forms -- 3 Invariants, Shimura Variety and Hecke Algebra -- 4 Review of Scheme Theory -- 5 Geometry of Variety -- 6 Elliptic and Modular Curves over Rings.- 7 Modular Curves as Shimura Variety.- 8 Non-vanishing Modulo p of Hecke L?values.- 9 p-Adic Hecke L-functions and their ?-invariants.- 10 Toric Subschemes in a Split Formal Torus -- 11 Hecke Stable Subvariety is a Shimura Subvariety -- References -- Symbol Index -- Statement Index -- Subject Index. 330 $aThis book contains a detailed account of the result of the author's recent Annals paper and JAMS paper on arithmetic invariant, including ?-invariant, L-invariant, and similar topics.   This book can be regarded as an introductory text to the author's previous book p-Adic Automorphic Forms on Shimura Varieties.  Written as a down-to-earth introduction to Shimura varieties, this text includes many examples and applications of the theory that provide motivation for the reader.  Since it is limited to modular curves and the corresponding Shimura varieties, this book is not only a great resource for experts in the field, but it is also accessible to advanced graduate students studying number theory.  Key topics include non-triviality of arithmetic invariants and special values of L-functions; elliptic curves over complex and p-adic fields; Hecke algebras; scheme theory; elliptic and modular curves over rings; and Shimura curves. 410 0$aSpringer monographs in mathematics. 606 $aNumber theory 606 $aElliptic functions 615 0$aNumber theory. 615 0$aElliptic functions. 676 $a516.352 700 $aHida$b Haruzo$062786 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438135703321 996 $aElliptic Curves and Arithmetic Invariants$92515931 997 $aUNINA