LEADER 13648nam 22007455 450 001 9910438119603321 005 20200630034931.0 010 $a94-007-5615-1 024 7 $a10.1007/978-94-007-5615-1 035 $a(CKB)3460000000120323 035 $a(SSID)ssj0000879488 035 $a(PQKBManifestationID)11495302 035 $a(PQKBTitleCode)TC0000879488 035 $a(PQKBWorkID)10853007 035 $a(PQKB)10286893 035 $a(DE-He213)978-94-007-5615-1 035 $a(MiAaPQ)EBC3095737 035 $a(Au-PeEL)EBL3095737 035 $a(CaPaEBR)ebr10968944 035 $a(OCoLC)832618133 035 $a(PPN)169141861 035 $a(EXLCZ)993460000000120323 100 $a20130321d2013 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aPlanets, Stars and Stellar Systems$b[electronic resource] $eVolume 4: Stellar Structure and Evolution /$fedited by Martin A. Barstow 205 $a1st ed. 2013. 210 1$aDordrecht :$cSpringer Netherlands :$cImprint: Springer,$d2013. 215 $a1 online resource (315 illus., 143 illus. in color. eReference.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a94-007-5616-X 311 $a94-007-5614-3 327 $aIntro -- Planets, Stars and Stellar Systems -- Stellar Structure and Evolution -- Series Preface -- Preface to Volume 4 -- Editor-in-Chief -- Volume Editor -- Table of Contents -- List of Contributors -- 1 Stellar Structure -- 1 Introduction -- 2 Hydrostatic Equilibrium -- 3 Energy Conservation -- 4 Energy Transport -- 4.1 Radiative Transport -- 4.2 Conductive Transport -- 4.3 Convective Transport -- 5 The Virial Theorem -- 6 Physical Inputs -- 6.1 Equation of State -- 6.1.1 Ions -- 6.1.2 Electrons -- 6.1.3 Nonideal Effects -- 6.2 Nuclear Reactions -- 6.2.1 General Concepts -- 6.2.2 Thermonuclear Reaction Rates -- 6.2.3 Electron Screening -- 6.2.4 Nuclear Networks -- 6.2.5 Hydrogen Burning Reactions -- 6.2.6 Helium Burning Reactions -- 6.2.7 Carbon Burning Reactions -- 6.2.8 Other Nuclear Reactions of Interest -- 6.3 Opacities and Conductivities -- 6.3.1 Radiative Opacities -- 6.3.2 Conduction -- 6.4 Neutrino Losses -- 7 Other Physical Processes -- 8 Boundary Conditions and Stellar Atmospheres -- 9 Numerical Techniques: Modern Implementations -- 10 State-of-the-Art Modeling -- 11 Summary -- Acknowledgments -- References -- 2 Stellar Atmospheres -- 1 Introduction -- 2 Basic Physics of Stellar Atmospheres -- 2.1 Overview of Basic Equilibrium Conditions: Atmospheric Layers -- 2.2 Interaction of Radiation with Matter -- 2.3 LTE Versus Non-LTE -- 3 Model Atmospheres -- 3.1 Hierarchy of Approximations -- 3.1.1 Approximations of the Geometry -- 3.1.2 Approximations of the Presence of External Forces -- 3.1.3 Approximations of the Dynamical State of the Atmosphere -- 3.1.4 Approximations of the Opacity Sources -- 3.1.5 Approximations Concerning the Thermodynamic Equilibria -- 3.2 Basic Equations of Classical Stellar Atmospheres -- 3.2.1 Radiative Transfer Equation -- 3.2.2 Hydrostatic Equilibrium Equation -- 3.2.3 Radiative Equilibrium Equation. 327 $a3.2.4 Statistical Equilibrium Equations -- 3.2.5 Charge Conservation Equation -- 3.3 Numerical Methods -- 3.3.1 Complete Linearization -- 3.3.2 Accelerated Lambda Iteration -- 3.3.3 Hybrid CL/ALI Method -- 3.4 Available Modeling Codes -- 3.5 Existing Model Atmosphere Grids -- 3.5.1 LTE Models -- 3.5.2 NLTE Models -- 4 Using Model Stellar Atmospheres to Determine the Fundamental Stellar Parameters -- 5 Summary and Outlook -- References -- 3 The Sun as a Star -- 1 Introduction -- 2 Historic Perspective -- 3 Observing the Solar Atmosphere from Space -- 3.1 Early Space Missions -- 3.2 Yohkoh -- 3.3 Ulysses -- 3.4 The Solar and Heliospheric Observatory - SoHO -- 3.5 Transition Region and Coronal Explorer (TRACE) -- 3.6 Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) -- 3.7 CORONAS Missions -- 3.8 Hinode -- 3.9 STEREO -- 3.10 Solar Dynamics Observatory (SDO) -- 3.11 Imaging Versus Spectroscopic Instruments -- 4 The Lower Solar Atmosphere -- 4.1 The Photosphere and the Sun's Magnetic Field -- 4.2 The Chromosphere -- 4.3 The Transition Region -- 5 The Interior of the Sun -- 5.1 The Standard Model and the Solar Neutrinos -- 5.2 Solar Oscillations -- 5.3 Some Results from Helioseismology Inversions -- 5.4 Abundances and Helioseismic Models -- 5.5 Local Helioseismology -- 5.6 The Solar Dynamo -- 6 Radiation from the Solar Corona: Atomic Processes and Plasma Diagnostics -- 6.1 Line Flux and Intensity -- 6.2 Differential Emission Measure and Emission Measure -- 6.3 Atomic Processes Affecting the Ion Excitation -- 6.4 Atomic Processes Affecting the Ion State -- 6.5 Coronal Model Approximation: Two-Level Ion -- 6.6 Emission Measure Approximations -- 6.7 A Word of Warning: Problems with Emission Measures -- 6.8 Electron Density Determination -- 6.9 Spectroscopic Filling Factors -- 6.10 Electron Temperature Determination -- 6.11 Continuum. 327 $a6.12 Line Widths, Ion Temperatures, and Doppler Motions -- 6.13 The CHIANTI Atomic Package -- 6.14 Benchmarking the Atomic Data -- 7 Chemical Abundances -- 7.1 Photospheric Abundances -- 7.2 Coronal Abundances -- 7.3 Abundances from In Situ Measurements -- 7.4 Depletion, Enhancement or Both? -- 7.5 Helium, Neon, and Argon -- 7.6 Modeling -- 7.7 Stellar and Galactic Abundances -- 8 The Solar Corona -- 8.1 Solar Features as Seen in X-rays and EUV -- 8.2 Solar Active Regions -- 8.2.1 Active Regions Observed with SoHO CDS -- 8.2.2 Active Regions Observed with Hinode EIS -- 8.3 Coronal Heating -- 8.3.1 Coronal Heating in Loops -- 8.3.2 Hydrostatic Models and the RTV Scaling Laws -- 8.3.3 Hydrodynamic Models of Active Region Loops -- 8.3.4 Microflares and Nanoflares -- 9 Solar Flares and Coronal Mass Ejections -- 9.1 Solar Flares -- 9.2 Coronal Mass Ejections (CMEs) -- 9.3 Theoretical Concepts of CME Initiation -- 9.4 Flares on Other Stars -- 10 Solar Wind -- 10.1 The Heliosphere -- 10.2 Physical Characteristics of the Solar Wind and Models -- 10.3 The Sources of the Solar Wind -- 10.4 Ulysses -- 11 Solar Irradiance -- 11.1 Introduction -- 11.2 Total Solar Irradiance, TSI, and Surface Temperature -- 11.3 Irradiance in the UV -- 11.3.1 Irradiance in the EUV and X-rays -- 12 Future Prospects -- 12.1 Solar Orbiter -- 12.2 Solar Probe+ -- References -- 4 Asteroseismology -- 1 Introduction: Variable and Pulsating Stars -- 2 Astrophysical Background -- 2.1 Driving Mechanisms -- 2.2 Asteroseismology -- 3 From the Telescope to a Seismic Model -- 3.1 Basic Methods for Analyzing Asteroseismic Data -- 3.2 Methods for Mode Identification -- 3.3 Asteroseismic Modeling -- 4 Applications -- 4.1 Pulsating White and Pre-white Dwarf Stars -- 4.2 Delta Scuti Stars -- 4.3 Slowly Pulsating B and Gamma Doradus Stars -- 4.4 Beta Cephei Stars -- 4.5 Pulsating Subdwarf Stars. 327 $a4.6 Rapidly Oscillating Ap Stars -- 4.7 Solar-Like Oscillators -- 4.8 Hybrid Pulsators -- 4.9 Pulsation in Eclipsing Binaries and Open Clusters -- 4.10 A New Era in Precision -- 4.11 Prospects and Problems -- Acknowledgments -- References -- 5 Star Formation -- 1 Introduction -- 1.1 The Basic Model of Star Formation -- 1.2 What Is a Star? -- 1.3 Open Questions -- 2 From Gas to Stars -- 2.1 Star Forming Regions -- 2.2 Molecular Clouds -- 2.2.1 Observations of MCs -- 2.2.2 Molecular Tracers -- 2.2.3 Dust as a Tracer -- 2.2.4 The Appearance of Star Forming Regions -- 2.2.5 The Structure and Kinematics of MCs -- 2.2.6 The Formation of Cores in Molecular Clouds -- 2.2.7 The Formation of Molecular Clouds -- 2.3 Low-Mass Star Formation -- 2.3.1 The Physics of Core Collapse -- 2.3.2 The Stages of Star Formation -- 2.3.3 Different Types of Young Stars -- 2.4 The Initial Mass Function -- 2.4.1 The Origin of the IMF -- 2.4.2 The IMF from Cores -- 2.4.3 Competitive Accretion -- 2.4.4 The CMF Verus Competitive Accretion -- 2.5 The Formation of Massive Stars -- 2.6 The Formation of Brown Dwarfs -- 2.7 Star Formation Efficiency -- 3 Multiple Stars, Star Clusters, and the End of Star Formation -- 3.1 Binary and Multiple Systems -- 3.1.1 Binary Formation -- 3.1.2 Binary Destruction -- 3.2 Binaries or Singles? -- 3.3 Star Clusters -- 3.4 The End of Star Formation -- 3.4.1 Gas Expulsion -- 3.4.2 Dynamical Evolution -- 3.5 Is Star Formation Universal? -- 4 Conclusions -- References -- 6 Young Stellar Objects and Protostellar Disks -- 1 Introduction -- 2 PMS Evolution: The Star -- 3 PMS Evolution: The Disk -- 3.1 Morphology of Protostellar Disks -- 3.1.1 The Inner Cavity Filled in with Hot Gas -- 3.1.2 Disks Are Flared -- 3.1.3 Dusty Atmospheres and Warps -- 3.2 Disk Mass -- 3.3 Composition of Protostellar Disks -- 3.3.1 Dust -- 3.3.2 Molecular Gas. 327 $a3.3.3 Disk Chemistry -- 3.4 Disk Formation -- 3.5 Protostellar Disks and the -Prescription Paradigm -- 3.5.1 The alpha-Prescription and Angular Momentum Transport by Gravitational Waves -- 3.6 Disk Structure: The Effect of Stellar Irradiation -- 3.6.1 YSOs' X-ray and UV Radiation Field -- 3.6.2 The Vertical Structure of Disks -- 3.7 Disk Stability -- 3.8 Disk Evolution -- 4 PMS Evolution: The Outflow -- 4.1 First Steps to a Mechanism for Outflow Generation: Disk Winds -- 4.2 The Star-Disk Interface: The Jet Engine -- 4.3 The Stellar Magnetosphere -- 4.3.1 Accretion Shocks and Funnels -- 4.3.2 General Magnetospheric Properties -- 5 Some Final Thoughts and Conclusions -- Acknowledgments -- Appendix A: The Gould's Belt -- References -- 7 Brown Dwarfs -- 1 Introduction -- 2 Formation and Evolution -- 2.1 The Hydrogen-Burning Mass Limit -- 2.2 Formation Mechanisms -- 2.3 Brown Dwarf Evolution -- 2.4 Brown Dwarfs and the Mass Function -- 3 Observational Properties of Brown Dwarfs -- 3.1 Spectroscopic Properties -- 3.2 Photometric Properties -- 3.3 Observations of Young Brown Dwarfs -- 3.4 Lithium Absorption and Other Mass-Dependent Spectroscopic Phenomena -- 3.5 Metallicity and Ultracool Subdwarfs -- 3.6 Brown Dwarf Kinematics and Brown Dwarf Rotation -- 3.7 Chromospheric and Coronal Activity in Brown Dwarfs -- 4 Brown Dwarf Atmospheres -- 4.1 Atmosphere Structure -- 4.2 Dust and Clouds in Brown Dwarf Atmospheres -- 4.3 Y Dwarfs -- 5 Brown Dwarfs as Companions -- 5.1 Brown Dwarf Companions to Main-Sequence Stars -- 5.2 Brown Dwarf Binaries -- 5.3 Ultracool Binaries in Context -- 6 Summary and Conclusions -- 7 Further Reading -- Acknowledgments -- References -- 8 Evolution of Solar andIntermediate-Mass Stars -- 1 Introduction -- 2 The Physics for Stellar Evolution -- 3 The Evolution of a 3 M Star -- 3.1 Pre-main Sequence to the End of He-Core Burning. 327 $a3.2 Asymptotic Giant Branch Evolution. 330 $aThis is volume 4 of Planets, Stars and Stellar Systems, a six-volume compendium of modern astronomical research, covering subjects of key interest to the main fields of contemporary astronomy. This volume on ?Stellar Structure and Evolution? edited by Martin A. Barstow presents accessible review chapters on Stellar Structure, Stellar Atmospheres, The Sun as a Star, Asteroseismology, Star Formation, Young Stellar Objects and Protostellar Disks, Brown Dwarfs, Evolution of Solar and Intermediate- Mass Stars, The Evolution of High Mass Stars, Stellar Activity, White Dwarf Stars, Black Holes and Neutron Stars, Binaries and Multiple Stellar Systems, Supernovae and Gamma-Ray Bursts, and Stellar Winds. All chapters of the handbook were written by practicing professionals. They include sufficient background material and references to the current literature to allow readers to learn enough about a specialty within astronomy, astrophysics and cosmology to get started on their own practical research projects. In the spirit of the series Stars and Stellar Systems published by Chicago University Press in the 1960s and 1970s, each chapter of Planets, Stars and Stellar Systems can stand on its own as a fundamental review of its respective sub-discipline, and each volume can be used as a textbook or recommended reference work for advanced undergraduate or postgraduate courses. Advanced students and professional astronomers in their roles as both lecturers and researchers will welcome Planets, Stars and Stellar Systems as a comprehensive and pedagogical reference work on astronomy, astrophysics and cosmology. 606 $aAstrophysics 606 $aObservations, Astronomical 606 $aAstronomy?Observations 606 $aSpace sciences 606 $aAstrophysics and Astroparticles$3https://scigraph.springernature.com/ontologies/product-market-codes/P22022 606 $aAstronomy, Observations and Techniques$3https://scigraph.springernature.com/ontologies/product-market-codes/P22014 606 $aSpace Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics)$3https://scigraph.springernature.com/ontologies/product-market-codes/P22030 615 0$aAstrophysics. 615 0$aObservations, Astronomical. 615 0$aAstronomy?Observations. 615 0$aSpace sciences. 615 14$aAstrophysics and Astroparticles. 615 24$aAstronomy, Observations and Techniques. 615 24$aSpace Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics). 676 $a523.01 702 $aBarstow$b Martin A$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438119603321 996 $aPlanets, Stars and Stellar Systems$92039106 997 $aUNINA