LEADER 03651oam 2200481 450 001 9910438037103321 005 20190911112726.0 010 $a3-642-39626-7 024 7 $a10.1007/978-3-642-39626-7 035 $a(OCoLC)857904343 035 $a(MiFhGG)GVRL6WTT 035 $a(EXLCZ)993710000000015877 100 $a20130821d2013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aConstant mean curvature surfaces with boundary /$fRafael Lopez 205 $a1st ed. 2013. 210 1$aHeidelberg, Germany :$cSpringer,$d2013. 215 $a1 online resource (xiv, 292 pages) $cillustrations 225 1 $aSpringer Monographs in Mathematics,$x1439-7382 300 $a"ISSN: 1439-7382." 311 $a3-642-39625-9 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Surfaces with Constant Mean Curvature -- Constant Mean Curvature Embedded Surfaces -- The Flux Formula for Constant Mean Curvature Surfaces -- The Area and the Volume of a Constant Mean Curvature Surface -- Constant Mean Curvature Discs with Circular Boundary -- The Dirichlet Problem of the CMC Equation -- The Dirichlet Problem in Unbounded Domains -- Constant Mean Curvature Surfaces in Hyperbolic Space -- The Dirichlet Problem in Hyperbolic Space -- Constant Mean Curvature Surfaces in Lorentz-Minkowski Space -- Appendix: A. The Variation Formula of the Area and the Volume -- B. Open Questions -- References. 330 $aThe study of surfaces with constant mean curvature (CMC) is one of the main topics in classical differential geometry. Moreover, CMC surfaces are important mathematical models for the physics of interfaces in the absence of gravity, where they separate two different media, or for capillary phenomena. Further, as most techniques used in the theory of CMC surfaces not only involve geometric methods but also PDE and complex analysis, the theory is also of great interest for many other mathematical fields.   While minimal surfaces and CMC surfaces in general have already been treated in the literature, the present work is the first to present a comprehensive study of ?compact surfaces with boundaries,? narrowing its focus to a geometric view. Basic issues include the discussion whether the symmetries of the curve inherit to the surface; the possible values of the mean curvature, area and volume; stability; the circular boundary case; and the existence of the Plateau problem in the non-parametric case. The exposition provides an outlook on recent research but also a set of techniques that allows the results to be expanded to other ambient spaces. Throughout the text, numerous illustrations clarify the results and their proofs.   The book is intended for graduate students and researchers in the field of differential geometry and especially theory of surfaces, including geometric analysis and geometric PDEs. It guides readers up to the state-of-the-art of the theory and introduces them to interesting open problems. 410 0$aSpringer monographs in mathematics. 606 $aSurfaces of constant curvature 606 $aCurves, Algebraic 606 $aBoundary value problems 615 0$aSurfaces of constant curvature. 615 0$aCurves, Algebraic. 615 0$aBoundary value problems. 676 $a510 700 $aLópez$b Rafael$4aut$4http://id.loc.gov/vocabulary/relators/aut$01059546 801 0$bMiFhGG 801 1$bMiFhGG 906 $aBOOK 912 $a9910438037103321 996 $aConstant Mean Curvature Surfaces with Boundary$92506834 997 $aUNINA