LEADER 03701nam 22007815 450 001 9910438033703321 005 20200701020654.0 010 $a1-4614-7004-8 024 7 $a10.1007/978-1-4614-7004-5 035 $a(CKB)3710000000015738 035 $a(EBL)1394847 035 $a(OCoLC)870244160 035 $a(SSID)ssj0000988146 035 $a(PQKBManifestationID)11544505 035 $a(PQKBTitleCode)TC0000988146 035 $a(PQKBWorkID)10950682 035 $a(PQKB)11607002 035 $a(DE-He213)978-1-4614-7004-5 035 $a(MiAaPQ)EBC1394847 035 $a(MiAaPQ)EBC6312586 035 $a(Au-PeEL)EBL1394847 035 $a(CaPaEBR)ebr10962442 035 $a(PPN)172418771 035 $a(EXLCZ)993710000000015738 100 $a20130809d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFunctional Analysis $eFundamentals and Applications /$fby Michel Willem 205 $a1st ed. 2013. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Birkhäuser,$d2013. 215 $a1 online resource (220 p.) 225 1 $aCornerstones,$x2197-182X 300 $aDescription based upon print version of record. 311 $a1-4899-8794-0 311 $a1-4614-7003-X 327 $aPreface -- The Integral -- Norm -- Lebesgue Spaces -- Duality -- Sobolev Spaces -- Capacity -- Elliptic Problems -- Appendix -- Epilogue -- References -- Index of Notations -- Index. 330 $aThe goal of this work is to present the principles of functional analysis in a clear and concise way. The first three chapters of Functional Analysis: Fundamentals and Applications describe the general notions of distance, integral and norm, as well as their relations. The three chapters that follow deal with fundamental examples: Lebesgue spaces, dual spaces and Sobolev spaces. Two subsequent chapters develop applications to capacity theory and elliptic problems. In particular, the isoperimetric inequality and the Pólya-Szeg? and Faber-Krahn inequalities are proved by purely functional methods. The epilogue contains a sketch of the history of functional  analysis, in relation with integration and differentiation. Starting from elementary analysis and introducing relevant recent research, this work is an excellent resource for students in mathematics and applied mathematics. 410 0$aCornerstones,$x2197-182X 606 $aFunctional analysis 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aDifferential equations, Partial 606 $aMathematics 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aMathematics, general$3https://scigraph.springernature.com/ontologies/product-market-codes/M00009 615 0$aFunctional analysis. 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aDifferential equations, Partial. 615 0$aMathematics. 615 14$aFunctional Analysis. 615 24$aAnalysis. 615 24$aPartial Differential Equations. 615 24$aMathematics, general. 676 $a510 700 $aWillem$b Michel$4aut$4http://id.loc.gov/vocabulary/relators/aut$0344839 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438033703321 996 $aFunctional Analysis$92517706 997 $aUNINA