LEADER 01769nam 2200565Ia 450 001 9911004749703321 005 20200520144314.0 010 $a1-61300-164-9 035 $a(CKB)2670000000281865 035 $a(EBL)3116766 035 $a(SSID)ssj0000748111 035 $a(PQKBManifestationID)12292796 035 $a(PQKBTitleCode)TC0000748111 035 $a(PQKBWorkID)10705564 035 $a(PQKB)11740530 035 $a(MiAaPQ)EBC3116766 035 $a(EXLCZ)992670000000281865 100 $a20120323d2012 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aButterfly valves $etorque, head loss, and cavitation analysis /$fBayard E. Bosserman, Amzad Ali, Irving M. Schuraytz 205 $a2nd ed. 210 $aDenver, CO $cAmerican Water Works Association$dc2012 215 $a1 online resource (104 p.) 225 1 $aAWWA manual ;$vM49 300 $aDescription based upon print version of record. 311 $a1-58321-879-3 320 $aIncludes bibliographical references and index. 327 $a""Cover ""; ""Copyright ""; ""Untitled""; ""Contents ""; ""Preface ""; ""TEXT "" 410 0$aAWWA manual ;$vM49. 606 $aWater-pipes$xValves 606 $aButterfly valves 606 $aWater-pipes$xHydrodynamics 615 0$aWater-pipes$xValves. 615 0$aButterfly valves. 615 0$aWater-pipes$xHydrodynamics. 676 $a621.8/4 700 $aBosserman$b Bayard E$01658699 701 $aAli$b Amzad$01824940 701 $aSchuraytz$b Irving M$01824941 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911004749703321 996 $aButterfly valves$94392367 997 $aUNINA LEADER 06021nam 22008535 450 001 9910438033003321 005 20200705083750.0 010 $a1-4614-7422-1 024 7 $a10.1007/978-1-4614-7422-7 035 $a(CKB)3710000000019023 035 $a(EBL)1466268 035 $a(SSID)ssj0001010511 035 $a(PQKBManifestationID)11577422 035 $a(PQKBTitleCode)TC0001010511 035 $a(PQKBWorkID)11004133 035 $a(PQKB)10566221 035 $a(DE-He213)978-1-4614-7422-7 035 $a(MiAaPQ)EBC6314064 035 $a(MiAaPQ)EBC1466268 035 $a(Au-PeEL)EBL1466268 035 $a(CaPaEBR)ebr10976178 035 $a(OCoLC)922907250 035 $a(PPN)172419255 035 $a(EXLCZ)993710000000019023 100 $a20130906d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe Mathematical Structure of Classical and Relativistic Physics $eA General Classification Diagram /$fby Enzo Tonti 205 $a1st ed. 2013. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Birkhäuser,$d2013. 215 $a1 online resource (537 p.) 225 1 $aModeling and Simulation in Science, Engineering and Technology,$x2164-3679 300 $aDescription based upon print version of record. 311 $a1-4614-7421-3 320 $aIncludes bibliographical references (pages [505]-512) and index. 327 $a1 Introduction -- Part I Analysis of variables and equations -- 2 Terminology revisited -- 3 Space and time elements and their orientation -- 4 Cell complexes -- 5 Analysis of physical variables -- 6 Analysis of physical equations -- 7 Algebraic topology -- 8 The birth of the classification diagrams -- Part II Analysis of physical theories -- 9 Particle dynamics -- 10 Electromagnetism -- 11 Mechanics of deformable solids -- 12 Mechanics of fluids -- 13 Other physical theories -- Part III Advanced analysis -- 14 General structure of the diagrams -- 15 The mathematical structure -- Part IV Appendices -- A Affine vector fields -- B Tensorial notation -- C On observable quantities -- D History of the diagram -- D.1 Historical remarks -- E List of physical variables -- F List of symbols used in this book -- G List of diagrams -- References. 330 $aThe theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence. Comparative study of physical theories has revealed the presence of a common topological and geometric structure. The Mathematical Structure of Classical and Relativistic Physics is the first book to analyze this structure in depth, thereby exposing the relationship between (a) global physical variables and (b) space and time elements such as points, lines, surfaces, instants, and intervals. Combining this relationship with the inner and outer orientation of space and time allows one to construct a classification diagram for variables, equations, and other theoretical characteristics. The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories. Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework. 410 0$aModeling and Simulation in Science, Engineering and Technology,$x2164-3679 606 $aMathematical physics 606 $aPhysics 606 $aDifferential equations, Partial 606 $aAlgebraic topology 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aMathematical Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/M35000 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aAlgebraic Topology$3https://scigraph.springernature.com/ontologies/product-market-codes/M28019 606 $aTheoretical, Mathematical and Computational Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19005 606 $aApplications of Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M13003 615 0$aMathematical physics. 615 0$aPhysics. 615 0$aDifferential equations, Partial. 615 0$aAlgebraic topology. 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 14$aMathematical Physics. 615 24$aMathematical Methods in Physics. 615 24$aPartial Differential Equations. 615 24$aAlgebraic Topology. 615 24$aTheoretical, Mathematical and Computational Physics. 615 24$aApplications of Mathematics. 676 $a530.15 700 $aTonti$b Enzo$4aut$4http://id.loc.gov/vocabulary/relators/aut$02016 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438033003321 996 $aThe Mathematical Structure of Classical and Relativistic Physics$92531000 997 $aUNINA