LEADER 03430nam 22007095 450 001 9910438027503321 005 20251202132234.0 010 $a1-4614-8526-6 024 7 $a10.1007/978-1-4614-8526-1 035 $a(CKB)3710000000019054 035 $a(EBL)1466235 035 $a(SSID)ssj0001010504 035 $a(PQKBManifestationID)11594915 035 $a(PQKBTitleCode)TC0001010504 035 $a(PQKBWorkID)10999792 035 $a(PQKB)10372300 035 $a(DE-He213)978-1-4614-8526-1 035 $a(MiAaPQ)EBC1466235 035 $a(MiAaPQ)EBC6315675 035 $a(Au-PeEL)EBL1466235 035 $a(CaPaEBR)ebr10962556 035 $a(OCoLC)922907091 035 $a(PPN)172421187 035 $a(EXLCZ)993710000000019054 100 $a20130924d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aHermitian Analysis $eFrom Fourier Series to Cauchy-Riemann Geometry /$fby John P. D'Angelo 205 $a1st ed. 2013. 210 1$aNew York, NY :$cSpringer New York :$cImprint: Birkhäuser,$d2013. 215 $a1 online resource (211 p.) 225 1 $aCornerstones,$x2197-1838 300 $aDescription based upon print version of record. 311 08$a1-4614-8525-8 320 $aIncludes bibliographical references and index. 327 $aPreface -- Introduction to Fourier series -- Hilbert spaces -- Fourier transform on R -- Geometric considerations -- Appendix -- References -- Index. . 330 $aHermitian Analysis: From Fourier Series to Cauchy-Riemann Geometry provides a coherent, integrated look at various topics from analysis. It begins with Fourier series, continues with Hilbert spaces, discusses the Fourier transform on the real line, and then turns to the heart of the book: geometric considerations in several complex variables. The final chapter includes complex differential forms, geometric inequalities from one and several complex variables, finite unitary groups, proper mappings, and naturally leads to the Cauchy-Riemann geometry of the unit sphere. The book thus takes the reader from the unit circle to the unit sphere. This textbook will be a useful resource for upper-undergraduate students who intend to continue with mathematics, graduate students interested in analysis, and researchers interested in some basic aspects of CR Geometry. It will also be useful for students in physics and engineering, as it includes topics in harmonic analysis arising in these subjects. The inclusion of an appendix and more than 270 exercises makes this book suitable for a capstone undergraduate Honors class. 410 0$aCornerstones,$x2197-1838 606 $aFourier analysis 606 $aGeometry, Differential 606 $aDifferential equations 606 $aFourier Analysis 606 $aDifferential Geometry 606 $aDifferential Equations 615 0$aFourier analysis. 615 0$aGeometry, Differential. 615 0$aDifferential equations. 615 14$aFourier Analysis. 615 24$aDifferential Geometry. 615 24$aDifferential Equations. 676 $a515.2433 700 $aD'Angelo$b John P$4aut$4http://id.loc.gov/vocabulary/relators/aut$060384 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910438027503321 996 $aHermitian Analysis$91732494 997 $aUNINA