LEADER 03655nam 2200613 a 450 001 9910437910803321 005 20200520144314.0 010 $a3-642-25697-X 024 7 $a10.1007/978-3-642-25697-4 035 $a(CKB)2670000000279591 035 $a(EBL)973111 035 $a(OCoLC)817562091 035 $a(SSID)ssj0000799408 035 $a(PQKBManifestationID)11497640 035 $a(PQKBTitleCode)TC0000799408 035 $a(PQKBWorkID)10763933 035 $a(PQKB)10029341 035 $a(DE-He213)978-3-642-25697-4 035 $a(MiAaPQ)EBC973111 035 $z(PPN)258858923 035 $a(PPN)168310090 035 $a(EXLCZ)992670000000279591 100 $a20121025d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBetween certainty and uncertainty $estatistics and probability in five units with notes on historical origins and illustrative numerical examples /$fLudomir M. Laudanski 205 $a1st ed. 2013. 210 $aHeidelberg $cSpringer$d2013 215 $a1 online resource (313 p.) 225 0$aIntelligent systems reference library,$x1868-4394 ;$vv. 31 300 $aDescription based upon print version of record. 311 $a3-642-43673-0 311 $a3-642-25696-1 320 $aIncludes bibliographical references and index. 327 $abk. 1. Theory -- bk. 2. Exercises. 330 $a?Between Certainty & Uncertainty? is a one-of?a-kind short course on statistics for students, engineers  and researchers.  It is a fascinating introduction to statistics and probability with notes on historical origins and 80 illustrative numerical examples organized in the five units:   ·         Chapter 1  Descriptive Statistics:  Compressing small samples, basic averages - mean and variance, their main properties including God?s proof; linear transformations and z-scored statistics .   ·         Chapter 2 Grouped data: Udny Yule?s concept of qualitative and quantitative variables. Grouping these two kinds of data. Graphical tools. Combinatorial rules and qualitative variables.  Designing frequency histogram. Direct and coded evaluation of quantitative data. Significance of percentiles.   ·         Chapter 3 Regression and correlation: Geometrical distance and equivalent distances in two orthogonal directions  as a prerequisite to the concept of two regression lines. Misleading in interpreting two regression lines. Derivation of the two regression lines. Was Hubble right? Houbolt?s cloud. What in fact measures the correlation coefficient?   ·         Chapter 4 Binomial distribution: Middle ages origins of the binomials; figurate numbers  and combinatorial rules. Pascal?s Arithmetical Triangle.  Bernoulli?s or Poisson Trials? John Arbuthnot curing binomials.  How Newton taught S. Pepys probability. Jacob Bernoulli?s Weak Law of Large Numbers and others.   ·         Chapter 5  Normal distribution and binomial heritage ? Tables of the normal distribution. Abraham de Moivre and the second theorem of de Moivre-Laplace.    . 410 0$aIntelligent Systems Reference Library,$x1868-4394 ;$v31 606 $aStatistics 606 $aStatistics$xHistory 615 0$aStatistics. 615 0$aStatistics$xHistory. 676 $a519.02/462 676 $a519.02462 700 $aLaudanski$b Ludomir M$01064640 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437910803321 996 $aBetween Certainty and Uncertainty$92539835 997 $aUNINA