LEADER 02905nam 2200697 a 450 001 9910437899403321 005 20200520144314.0 010 $a9781283945721 010 $a128394572X 010 $a9783642333446 010 $a3642333443 024 7 $a10.1007/978-3-642-33344-6 035 $a(CKB)2670000000317378 035 $a(EBL)1082674 035 $a(OCoLC)823728122 035 $a(SSID)ssj0000810998 035 $a(PQKBManifestationID)11485257 035 $a(PQKBTitleCode)TC0000810998 035 $a(PQKBWorkID)10846472 035 $a(PQKB)10988555 035 $a(DE-He213)978-3-642-33344-6 035 $a(MiAaPQ)EBC1082674 035 $a(PPN)168324202 035 $a(EXLCZ)992670000000317378 100 $a20120831d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aGeometrical methods for power network analysis /$fStefano Bellucci, Bhupendra Nath Tiwari, Neeraj Gupta 205 $a1st ed. 2013. 210 $aHeidelberg [Germany] ;$aNew York $cSpringer$d2013 215 $a1 online resource (106 p.) 225 0$aSpringerBriefs in electrical and computer engineering,$x2191-8112 300 $aDescription based upon print version of record. 311 08$a9783642333439 311 08$a3642333435 320 $aIncludes bibliographical references. 327 $aMethodology -- Intrinsic Geometric Characterization -- A Test of Network Reliability -- A Test of Voltage Stability -- Phases of Power Network -- Phase Shift Correction -- Complex Power Optimization -- Large Scale Voltage Instability. 330 $aThis book is a short introduction to power system planning and operation using advanced geometrical methods. The approach is based on well-known insights and techniques developed in theoretical physics in the context of Riemannian manifolds. The proof of principle and robustness of this approach is examined in the context of the IEEE 5 bus system. This work addresses applied mathematicians, theoretical physicists and power engineers interested in novel mathematical approaches to power network theory. 410 0$aSpringerBriefs in Electrical and Computer Engineering,$x2191-8112 606 $aElectric power-plants$xPlanning 606 $aContact manifolds 606 $aSymplectic manifolds 606 $aGeometry, Riemannian 615 0$aElectric power-plants$xPlanning. 615 0$aContact manifolds. 615 0$aSymplectic manifolds. 615 0$aGeometry, Riemannian. 676 $a621.3101516 700 $aBellucci$b Stefano$066150 701 $aTiwari$b Bhupendra Nath$01762187 701 $aGupta$b Neeraj$01726242 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437899403321 996 $aGeometrical methods for power network analysis$94201967 997 $aUNINA