LEADER 03614nam 22007335 450 001 9910437879503321 005 20251230070026.0 010 $a1-283-93464-7 010 $a3-0348-0487-3 024 7 $a10.1007/978-3-0348-0487-5 035 $a(CKB)2670000000317292 035 $a(EBL)1082168 035 $a(OCoLC)823388536 035 $a(SSID)ssj0000830665 035 $a(PQKBManifestationID)11966381 035 $a(PQKBTitleCode)TC0000830665 035 $a(PQKBWorkID)10820331 035 $a(PQKB)10658065 035 $a(DE-He213)978-3-0348-0487-5 035 $a(MiAaPQ)EBC1082168 035 $a(PPN)168307332 035 $a(EXLCZ)992670000000317292 100 $a20121212d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aArithmetic and Geometry Around Galois Theory /$fedited by Pierre Dèbes, Michel Emsalem, Matthieu Romagny, A. Muhammed Uluda? 205 $a1st ed. 2013. 210 1$aBasel :$cSpringer Basel :$cImprint: Birkhäuser,$d2013. 215 $a1 online resource (410 p.) 225 1 $aProgress in Mathematics,$x2296-505X 300 $aDescription based upon print version of record. 311 08$a3-0348-0790-2 311 08$a3-0348-0486-5 320 $aIncludes bibliographical references. 327 $aPreface -- J. Bertin: Algebraic stacks with a view toward moduli stacks of covers -- M. Romagny: Models of curves -- A. Cadoret: Galois categories:- M. Emsalem. Fundamental groupoid scheme -- N. Borne: Extension of Galois groups by solvable groups, and application to fundamental groups of curves -- M.A. Garuti: On the ?Galois closure? for finite morphisms -- J.-C. Douai: Hasse Principle and Cohomology of Groups -- Z. Wojtkowiak: Periods of mixed Tate motives, examples, l-adic side -- L. Bary-Soroker and E. Paran: On totally ramified extensions of discrete valued fields -- R.-P. Holzapfel and M. Petkova: An Octahedral Galois-Reflection Tower of Picard Modular Congruence Subgroups. 330 $aThis Lecture Notes volume is the fruit of two research-level summer schools jointly organized by the GTEM node at Lille University and the team of Galatasaray University (Istanbul):  "Geometry and Arithmetic of Moduli Spaces of Coverings (2008)" and "Geometry and Arithmetic around Galois Theory (2009)". The volume focuses on geometric methods in Galois theory. The choice of the editors is to provide a complete and comprehensive account of modern points of view on Galois theory and related moduli problems, using stacks, gerbes and groupoids. It contains lecture notes on étale fundamental group and fundamental group scheme, and moduli stacks of curves and covers. Research articles complete the collection. 410 0$aProgress in Mathematics,$x2296-505X 606 $aAlgebraic geometry 606 $aAlgebraic fields 606 $aPolynomials 606 $aGroup theory 606 $aAlgebraic Geometry 606 $aField Theory and Polynomials 606 $aGroup Theory and Generalizations 615 0$aAlgebraic geometry. 615 0$aAlgebraic fields. 615 0$aPolynomials. 615 0$aGroup theory. 615 14$aAlgebraic Geometry. 615 24$aField Theory and Polynomials. 615 24$aGroup Theory and Generalizations. 676 $a512.5 676 $a512.32 701 $aDebes$b Pierre$01754920 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437879503321 996 $aArithmetic and geometry around Galois theory$94191435 997 $aUNINA