LEADER 03683nam 22007215 450 001 9910437879303321 005 20200703214539.0 010 $a3-642-37070-5 024 7 $a10.1007/978-3-642-37070-0 035 $a(CKB)3390000000037193 035 $a(SSID)ssj0000904329 035 $a(PQKBManifestationID)11479368 035 $a(PQKBTitleCode)TC0000904329 035 $a(PQKBWorkID)10919676 035 $a(PQKB)10410708 035 $a(DE-He213)978-3-642-37070-0 035 $a(MiAaPQ)EBC3107012 035 $a(PPN)170491285 035 $a(EXLCZ)993390000000037193 100 $a20130514d2013 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aMethod of Guiding Functions in Problems of Nonlinear Analysis /$fby Valeri Obukhovskii, Pietro Zecca, Nguyen Van Loi, Sergei Kornev 205 $a1st ed. 2013. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2013. 215 $a1 online resource (XIII, 177 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2076 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-642-37069-1 327 $a1 Background -- 2 MGF in Finite-Dimensional Spaces -- 3 Guiding Functions in Hilbert Spaces.- 4 Second-Order Differential Inclusions.- 5 Nonlinear Fredholm Inclusions. 330 $aThis book offers a self-contained introduction to the theory of guiding functions methods, which can be used to study the existence of periodic solutions and their bifurcations in ordinary differential equations, differential inclusions and in control theory. It starts with the basic concepts of nonlinear and multivalued analysis, describes the classical aspects of the method of guiding functions, and then presents recent findings only available in the research literature. It describes essential applications in control theory, the theory of bifurcations, and physics, making it a valuable resource not only for ?pure? mathematicians, but also for students and researchers working in applied mathematics, the engineering sciences and physics. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2076 606 $aMathematics 606 $aOperator theory 606 $aGame theory 606 $aSystem theory 606 $aMathematics, general$3https://scigraph.springernature.com/ontologies/product-market-codes/M00009 606 $aOperator Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M12139 606 $aGame Theory, Economics, Social and Behav. Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/M13011 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 615 0$aMathematics. 615 0$aOperator theory. 615 0$aGame theory. 615 0$aSystem theory. 615 14$aMathematics, general. 615 24$aOperator Theory. 615 24$aGame Theory, Economics, Social and Behav. Sciences. 615 24$aSystems Theory, Control. 676 $a530.15 700 $aObukhovskii$b Valeri$4aut$4http://id.loc.gov/vocabulary/relators/aut$0479692 702 $aZecca$b Pietro$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aVan Loi$b Nguyen$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aKornev$b Sergei$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437879303321 996 $aMethod of guiding functions in problems of nonlinear analysis$9258681 997 $aUNINA