LEADER 03158nam 2200505Ia 450 001 9910437877203321 005 20240820230220.0 010 $a1-4614-6306-8 024 7 $a10.1007/978-1-4614-6306-1 035 $a(OCoLC)836776098 035 $a(MiFhGG)GVRL6XBL 035 $a(CKB)2670000000340906 035 $a(MiAaPQ)EBC1106347 035 $a(EXLCZ)992670000000340906 100 $a20130129d2013 uy 0 101 0 $aeng 135 $aurun#---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aFrom kinetic models to hydrodynamics $esome novel results /$fMatteo Colangeli 205 $a1st ed. 2013. 210 $aNew York $cSpringer$d2013 215 $a1 online resource (xii, 96 pages) $cillustrations (some color) 225 1 $aSpringerBriefs in Mathematics,$x2191-8198 300 $a"ISSN: 2191-8198." 311 $a1-4614-6305-X 320 $aIncludes bibliographical references. 327 $a1. Introduction -- 2. From the Phase Space to the Boltzmann Equation -- 3. Methods of Reduced Description -- 4. Hydrodynamic Spectrum of Simple Fluids -- 5. Hydrodynamic Fluctuations from the Boltzmann Equation -- 6. 13 Moment Grad System -- 7. Conclusions -- References.     . 330 $aFrom Kinetic Models to Hydrodynamics serves as an introduction to the asymptotic methods necessary to obtain hydrodynamic equations from a fundamental description using kinetic theory models and the Boltzmann equation.  The work is a survey of an active research area, which aims to bridge time and length scales from the particle-like description inherent in Boltzmann equation theory to a fully established ?continuum? approach typical of macroscopic laws of physics. The author sheds light on a new method?using invariant manifolds?which addresses a functional equation for the nonequilibrium single-particle distribution function.  This method allows one to find exact and thermodynamically consistent expressions for: hydrodynamic modes; transport coefficient expressions for hydrodynamic modes; and transport coefficients of a fluid beyond the traditional hydrodynamic limit.  The invariant manifold method paves the way to establish a needed bridge between Boltzmann equation theory and a particle-based theory of hydrodynamics.  Finally, the author explores the ambitious and longstanding task of obtaining hydrodynamic constitutive equations from their kinetic counterparts. The work is intended for specialists in kinetic theory?or more generally statistical mechanics?and will provide a bridge between a physical and mathematical approach to solve real-world problems. 410 0$aSpringerBriefs in mathematics. 606 $aDynamics 606 $aHydrodynamics$xMathematical models 615 0$aDynamics. 615 0$aHydrodynamics$xMathematical models. 676 $a621.89 686 $aUG 1300$2rvk 700 $aColangeli$b Matteo$01059542 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437877203321 996 $aFrom Kinetic Models to Hydrodynamics$92506824 997 $aUNINA