LEADER 03886nam 22007935 450 001 9910437874903321 005 20230711071615.0 010 $a0-8176-8364-X 024 7 $a10.1007/978-0-8176-8364-1 035 $a(CKB)3400000000085979 035 $a(EBL)1030324 035 $a(OCoLC)811773514 035 $a(SSID)ssj0000766970 035 $a(PQKBManifestationID)11479845 035 $a(PQKBTitleCode)TC0000766970 035 $a(PQKBWorkID)10739597 035 $a(PQKB)10781259 035 $a(DE-He213)978-0-8176-8364-1 035 $a(MiAaPQ)EBC1030324 035 $a(MiAaPQ)EBC6312653 035 $a(PPN)16828863X 035 $a(EXLCZ)993400000000085979 100 $a20120922d2013 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aConfigurations from a Graphical Viewpoint /$fby Tomaz Pisanski, Brigitte Servatius 205 $a1st ed. 2013. 210 1$aBoston, MA :$cBirkhäuser Boston :$cImprint: Birkhäuser,$d2013. 215 $a1 online resource (288 p.) 225 1 $aBirkhäuser Advanced Texts Basler Lehrbücher,$x2296-4894 300 $aDescription based upon print version of record. 311 $a0-8176-8363-1 320 $aIncludes bibliographical references (p. 265-269) and index. 327 $aPreface -- Introduction -- Graphs -- Groups, Actions, and Symmetry -- Maps -- Combinatorial Configurations -- Geometric Configurations -- Index -- Bibliography. 330 $aConfigurations can be studied from a graph-theoretical viewpoint via the so-called Levi graphs and lie at the heart of graphs, groups, surfaces, and geometries, all of which are very active areas of mathematical exploration. In this self-contained textbook, algebraic graph theory is used to introduce groups; topological graph theory is used to explore surfaces; and geometric graph theory is implemented to analyze incidence geometries. After a preview of configurations in Chapter 1, a concise introduction to graph theory is presented in Chapter 2, followed by a geometric introduction to groups in Chapter 3. Maps and surfaces are combinatorially treated in Chapter 4. Chapter 5 introduces the concept of incidence structure through vertex colored graphs, and the combinatorial aspects of classical configurations are studied. Geometric aspects, some historical remarks, references, and applications of classical configurations appear in the last chapter. With over two hundred illustrations, challenging exercises at the end of each chapter, a comprehensive bibliography, and a set of open problems, Configurations from a Graphical Viewpoint is well suited for a graduate graph theory course, an advanced undergraduate seminar, or a self-contained reference for mathematicians and researchers. 410 0$aBirkhäuser Advanced Texts Basler Lehrbücher,$x2296-4894 606 $aGraph theory 606 $aGeometry 606 $aDiscrete mathematics 606 $aTopology 606 $aGeometry, Algebraic 606 $aGraph Theory 606 $aGeometry 606 $aDiscrete Mathematics 606 $aTopology 606 $aAlgebraic Geometry 615 0$aGraph theory. 615 0$aGeometry. 615 0$aDiscrete mathematics. 615 0$aTopology. 615 0$aGeometry, Algebraic. 615 14$aGraph Theory. 615 24$aGeometry. 615 24$aDiscrete Mathematics. 615 24$aTopology. 615 24$aAlgebraic Geometry. 676 $a511.5 700 $aPisanski$b Tomaz$4aut$4http://id.loc.gov/vocabulary/relators/aut$01059117 702 $aServatius$b Brigitte$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437874903321 996 $aConfigurations from a Graphical Viewpoint$92504203 997 $aUNINA