LEADER 01341nam a22003495i 4500 001 991002220519707536 007 cr nn 008mamaa 008 121227s2004 de | s |||| 0|eng d 020 $a9783540446538 035 $ab14140056-39ule_inst 040 $aBibl. Dip.le Aggr. Matematica e Fisica - Sez. Matematica$beng 082 04$a515.352$223 084 $aAMS 34G 100 1 $aPrato, Giuseppe Da$0478897 245 10$aFunctional analytic methods for evolution equations$h[e-book] /$cby Giuseppe Da Prato ... [et al.] ; edited by Mimmo Iannelli ... [et al.] 260 $aBerlin :$bSpringer,$c2004 300 $a1 online resource (cdlxxxiv, 474 p.) 440 0$aLecture Notes in Mathematics,$x1617-9692 ;$v1855 650 0$aMathematics 650 0$aFourier analysis 650 0$aOperator theory 650 0$aDifferential equations, partial 650 0$aMathematical optimization 650 0$aDistribution (Probability theory) 700 1 $aIannelli, Mimmo 773 0 $aSpringer eBooks 856 40$uhttp://dx.doi.org/10.1007/b100449$zAn electronic book accessible through the World Wide Web 907 $a.b14140056$b03-03-22$c05-09-13 912 $a991002220519707536 996 $aFunctional analytic methods for evolution equations$9262220 997 $aUNISALENTO 998 $ale013$b05-09-13$cm$d@ $e-$feng$gde $h0$i0 LEADER 01148nam 2200337 450 001 9910717402503321 005 20230626222649.0 035 $a(CKB)5710000000118307 035 $a(NjHacI)995710000000118307 035 $a(EXLCZ)995710000000118307 100 $a20230626d2023 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAdministrative Practices and Political Control in Anatolian and Syro-Anatolian Polities in the 2nd and 1st Millennium BCE /$fClelia Mora, Giulia Torri 210 1$aFirenze, Italy :$cFirenze University Press,$d2023. 215 $a1 online resource (214 pages) 311 $a979-1-221-50042-4 606 $aPolitics, Practical 615 0$aPolitics, Practical. 676 $a324.7 700 $aMora$b Clelia$0302086 702 $aTorri$b Giulia 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910717402503321 996 $aAdministrative Practices and Political Control in Anatolian and Syro-Anatolian Polities in the 2nd and 1st Millennium BCE$93392976 997 $aUNINA LEADER 03034nam 2200553Ia 450 001 9910437872803321 005 20200520144314.0 010 $a1-4614-7098-6 024 7 $a10.1007/978-1-4614-7098-4 035 $a(CKB)2670000000370320 035 $a(EBL)1697101 035 $a(SSID)ssj0000908194 035 $a(PQKBManifestationID)11547325 035 $a(PQKBTitleCode)TC0000908194 035 $a(PQKBWorkID)10900844 035 $a(PQKB)10994287 035 $a(DE-He213)978-1-4614-7098-4 035 $a(MiAaPQ)EBC1697101 035 $a(PPN)169136930 035 $a(EXLCZ)992670000000370320 100 $a20130427d2013 uy 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aOverconvergence in complex approximation /$fSorin G. Gal 205 $a1st ed. 2013. 210 $aNew York $cSpringer Science$d2013 215 $a1 online resource (206 p.) 300 $aDescription based upon print version of record. 311 $a1-4899-9791-1 311 $a1-4614-7097-8 320 $aIncludes bibliographical references and index. 327 $aOverconvergence in C of Some Bernstein-Type Operators -- Overconvergence and Convergence in C of Some Integral Convolutions -- Overconvergence in C of the Orthogonal Expansions . 330 $aThis monograph deals with the quantitative overconvergence phenomenon in complex approximation by various operators. The book is divided into three chapters. First, the results for the Schurer-Faber operator, Beta operators of first kind, Bernstein-Durrmeyer-type operators and Lorentz operator are presented. The main focus is on results for several q-Bernstein kind of operators with q > 1, when the geometric order of approximation 1/q^n is obtained not only in complex compact disks but also in quaternion compact disks and in other compact subsets of the complex plane. The focus then shifts to quantitative overconvergence and convolution overconvergence results for the complex potentials generated by the Beta and Gamma Euler's functions. Finally quantitative overconvergence results for the most classical orthogonal expansions  (of  Chebyshev, Legendre, Hermite,  Laguerre and Gegenbauer kinds) attached to vector-valued functions are presented. Each chapter concludes with a notes and open problems section, thus providing stimulation for further research. An extensive bibliography and index complete the text.    This book is suitable for researchers and graduate students working in complex approximation and its applications, mathematical analysis and numerical analysis. 606 $aApproximation theory 606 $aFunctional analysis 615 0$aApproximation theory. 615 0$aFunctional analysis. 676 $a511/.4 700 $aGal$b Sorin G$0474332 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437872803321 996 $aOverconvergence in Complex Approximation$92504200 997 $aUNINA