LEADER 02775nam 2200505 a 450 001 9910437872003321 005 20200520144314.0 010 $a3-642-36519-1 024 7 $a10.1007/978-3-642-36519-5 035 $a(OCoLC)852793209 035 $a(MiFhGG)GVRL6XRE 035 $a(CKB)2670000000403442 035 $a(MiAaPQ)EBC1317730 035 $a(EXLCZ)992670000000403442 100 $a20130514d2013 uy 0 101 0 $aeng 135 $aurun|---uuuua 181 $ctxt 182 $cc 183 $acr 200 10$aMixed finite element methods and applications /$fDaniele Boffi, Franco Brezzi, Michel Fortin 205 $a1st ed. 2013. 210 $aNew York $cSpringer$d2013 215 $a1 online resource (xiv, 685 pages) $cillustrations 225 0$aSpringer series in computational mathematics,$x0179-3632 ;$v44 300 $a"ISSN: 0179-3632." 311 $a3-642-43602-1 311 $a3-642-36518-3 320 $aIncludes bibliographical references and index. 327 $aPreface -- Variational Formulations and Finite Element Methods -- Function Spaces and Finite Element Approximations -- Algebraic Aspects of Saddle Point Problems -- Saddle Point Problems in Hilbert spaces -- Approximation of Saddle Point Problems -- Complements: Stabilisation Methods, Eigenvalue Problems -- Mixed Methods for Elliptic Problems -- Incompressible Materials and Flow Problems -- Complements on Elasticity Problems -- Complements on Plate Problems -- Mixed Finite Elements for Electromagnetic Problems -- Index.        . 330 $aNon-standard finite element methods, in particular mixed methods, are central to many applications. In this text the authors, Boffi, Brezzi and Fortin present a general framework, starting with a finite dimensional presentation, then moving on to formulation in Hilbert spaces and finally considering approximations, including stabilized methods and eigenvalue problems. This book also provides an introduction to standard finite element approximations, followed by the construction of elements for the approximation of mixed formulations in H(div) and H(curl). The general theory is applied to some classical examples: Dirichlet's problem, Stokes' problem,  plate problems, elasticity and electromagnetism. 410 0$aSpringer series in computational mathematics ;$v44. 606 $aFinite element method 615 0$aFinite element method. 676 $a518.25 700 $aBoffi$b Daniele$0323538 701 $aBrezzi$b F$g(Franco),$f1945-$030970 701 $aFortin$b Michel$055670 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910437872003321 996 $aMixed finite element methods and applications$9820682 997 $aUNINA