LEADER 05178nam 22005535 450 001 9910789209803321 005 20200702042056.0 010 $a3-642-51438-3 024 7 $a10.1007/978-3-642-51438-8 035 $a(CKB)3400000000103668 035 $a(SSID)ssj0001297766 035 $a(PQKBManifestationID)11861127 035 $a(PQKBTitleCode)TC0001297766 035 $a(PQKBWorkID)11229586 035 $a(PQKB)11386519 035 $a(DE-He213)978-3-642-51438-8 035 $a(MiAaPQ)EBC3089336 035 $a(PPN)238008290 035 $a(EXLCZ)993400000000103668 100 $a20121227d1990 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aNéron Models$b[electronic resource] /$fby Siegfried Bosch, Werner Lütkebohmert, Michel Raynaud 205 $a1st ed. 1990. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1990. 215 $a1 online resource (X, 328 p.) 225 1 $aErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,$x0071-1136 ;$v21 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-50587-3 311 $a3-642-08073-1 320 $aIncludes bibliographical references and index. 327 $a1. What Is a Néron Model? -- 1.1 Integral Points -- 1.2 Néron Models -- 1.3 The Local Case: Main Existence Theorem -- 1.4 The Global Case: Abelian Varieties -- 1.5 Elliptic Curves -- 1.6 Néron?s Original Article -- 2. Some Background Material from Algebraic Geometry -- 2.1 Differential Forms -- 2.2 Smoothness -- 2.3 Henselian Rings -- 2.4 Flatness -- 2.5 S-Rational Maps -- 3. The Smoothening Process -- 3.1 Statement of the Theorem -- 3.2 Dilatation -- 3.3 Néron?s Measure for the Defect of Smoothness -- 3.4 Proof of the Theorem -- 3.5 Weak Néron Models -- 3.6 Algebraic Approximation of Formal Points -- 4. Construction of Birational Group Laws -- 4.1 Group Schemes -- 4.2 Invariant Differential Forms -- 4.3 R-Extensions of K-Group Laws -- 4.4 Rational Maps into Group Schemes -- 5. From Birational Group Laws to Group Schemes -- 5.1 Statement of the Theorem -- 5.2 Strict Birational Group Laws -- 5.3 Proof of the Theorem for a Strictly Henselian Base -- 6. Descent -- 6.1 The General Problem -- 6.2 Some Standard Examples of Descent -- 6.3 The Theorem of the Square -- 6.4 The Quasi-Projectivity of Torsors -- 6.5 The Descent of Torsors -- 6.6 Applications to Birational Group Laws -- 6.7 An Example of Non-Effective Descent -- 7. Properties of Néron Models -- 7.1 A Criterion -- 7.2 Base Change and Descent -- 7.3 Isogenies -- 7.4 Semi-Abelian Reduction -- 7.5 Exactness Properties -- 7.6 Weil Restriction -- 8. The Picard Functor -- 8.1 Basics on the Relative Picard Functor -- 8.2 Representability by a Scheme -- 8.3 Representability by an Algebraic Space -- 8.4 Properties -- 9. Jacobians of Relative Curves -- 9.1 The Degree of Divisors -- 9.2 The Structure of Jacobians -- 9.3 Construction via Birational Group Laws -- 9.4 Construction via Algebraic Spaces -- 9.5 Picard Functor and Néron Models of Jacobians -- 9.6 The Group of Connected Components of a Néron Model -- 9.7 Rational Singularities -- 10. Néron Models of Not Necessarily Proper Algebraic Groups -- 10.1 Generalities -- 10.2 The Local Case -- 10.3 The Global Case. 330 $aNéron models were invented by A. Néron in the early 1960s in order to study the integral structure of abelian varieties over number fields. Since then, arithmeticians and algebraic geometers have applied the theory of Néron models with great success. Quite recently, new developments in arithmetic algebraic geometry have prompted a desire to understand more about Néron models, and even to go back to the basics of their construction. The authors have taken this as their incentive to present a comprehensive treatment of Néron models. This volume of the renowned "Ergebnisse" series provides a detailed demonstration of the construction of Néron models from the point of view of Grothendieck's algebraic geometry. In the second part of the book the relationship between Néron models and the relative Picard functor in the case of Jacobian varieties is explained. The authors helpfully remind the reader of some important standard techniques of algebraic geometry. A special chapter surveys the theory of the Picard functor. 410 0$aErgebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics,$x0071-1136 ;$v21 606 $aAlgebraic geometry 606 $aAlgebraic Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M11019 615 0$aAlgebraic geometry. 615 14$aAlgebraic Geometry. 676 $a516.35 700 $aBosch$b Siegfried$4aut$4http://id.loc.gov/vocabulary/relators/aut$041946 702 $aLütkebohmert$b Werner$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aRaynaud$b Michel$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910789209803321 996 $aNeron models$9382528 997 $aUNINA LEADER 03497nam 22007935 450 001 9910437654403321 005 20251101110036.0 010 $a9783050065113 010 $a3050065117 024 7 $a10.1524/9783050065113 035 $a(CKB)2550000001239650 035 $a(EBL)1394777 035 $a(OCoLC)874320060 035 $a(SSID)ssj0001183850 035 $a(PQKBManifestationID)11714354 035 $a(PQKBTitleCode)TC0001183850 035 $a(PQKBWorkID)11186216 035 $a(PQKB)10802524 035 $a(MiAaPQ)EBC1394777 035 $a(DE-B1597)227130 035 $a(OCoLC)880450063 035 $a(OCoLC)885390105 035 $a(DE-B1597)9783050065113 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/62830 035 $a(Perlego)1158930 035 $a(oapen)doab62830 035 $a(ODN)ODN0002498792 035 $a(EXLCZ)992550000001239650 100 $a20190708d2013 fg 101 0 $ager 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aWörterbuch zum Demokratiediskurs 1967/68 /$fHeidrun Kämper 205 $a1st ed. 210 $cDe Gruyter$d2013 210 1$aBerlin :$cAkademie Verlag,$d[2013] 210 4$d©2013 215 $a1 online resource (1132 p.) 300 $aDescription based upon print version of record. 311 08$a9783050064444 311 08$a3050064447 311 08$a9783050102993 311 08$a3050102993 320 $aIncludes bibliographical references. 327 $tFrontmatter --$tInhalt --$tEinleitung --$tQuellenverzeichnis --$tLemmaliste --$tWörterbuch --$tA --$tB --$tC --$tD --$tE --$tF --$tG --$tH --$tI --$tJ --$tK --$tL --$tM --$tO --$tP --$tR --$tS --$tT --$tU --$tV --$tW --$tZ 330 $aDieses Wörterbuch stellt den lexikalisch-semantischen Bestand des Demokratiediskurses der späten 1960er Jahre dar. Dieser Demokratiediskurs ist insofern als ein gesellschaftliches Umbruchphänomen zu beschreiben, als in den späten 1960er Jahren die intellektuelle und die studentische Linke Partizipationsansprüche einer konsequenten Demokratie für kurze Zeit in hoher kommunikativer Dichte und Intensität erhob. Die Folgen dieser demokratischen Neukonzeptionen prägen seither die Gesellschaften hinsichtlich ihrer Demokratiemodelle, in Bezug etwa auf Teilhabe, auf die Unabhängigkeit von parlamentarischer Politikpraxis sowie hinsichtlich des Anspruchs auf gesellschaftliche Mitgestaltung. Die Schlüsselwörter, in deren Bedeutung sich dieser Diskurs verdichtet, werden nach den spezifischen Prinzipien eines Diskurswörterbuchs, d.h. vor allem im Sinn eines diskursiven semantischen Netzes, beschrieben. 606 $aDemocracy$vDictionaries$xGerman 606 $aRadicalism$vDictionaries$xGerman 606 $aGerman language$xEtymology$vDictionaries 606 $aCritical discourse analysis$zGermany 606 $aGerman language$xDiscourse analysis 615 0$aDemocracy$xGerman. 615 0$aRadicalism$xGerman. 615 0$aGerman language$xEtymology 615 0$aCritical discourse analysis 615 0$aGerman language$xDiscourse analysis. 676 $a901.9 676 $a909 686 $aGB 1534$2rvk 700 $aKa?mper$b Heidrun$f1954-$0388381 701 $aLink$b Elisabeth$01242239 801 0$bDE-B1597 801 1$bDE-B1597 906 $aBOOK 912 $a9910437654403321 996 $aWörterbuch zum Demokratiediskurs 1967$93568299 997 $aUNINA