LEADER 02217nam 22004213a 450 001 9910433226703321 005 20231108184551.0 024 8 $ahttps://doi.org/10.30819/5187 035 $a(CKB)4100000011743225 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/64447 035 $a(ScCtBLL)04c2c828-9a9e-4ed5-ae09-89bc316a7c8f 035 $a(EXLCZ)994100000011743225 100 $a20231108i20202021 uu 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aTime-Periodic Solutions to the Equations of Magnetohydrodynamics with Background Magnetic Field$fJens-Henning Möller 210 1$a[s.l.] :$cLogos Verlag Berlin,$d2020. 215 $a1 electronic resource (145 p.) 311 08$a9783832551872 311 08$a3832551875 330 $aIn the first part of this thesis we extend the theory of anisotropic Triebel-Lizorkin spaces to time-periodic functions. In particular, the spatial trace space is determined together with the existence of extension operators. Additionally, some results regarding pointwise multiplication are provided. As a preparation for this theory we prove a transference principle for multipliers with values in the spaces of summable sequences. Secondly, we consider the equations of magnetohydrodynamics with a background magnetic field and time-periodic forcing. Maximal regularity of the time-periodic linear problem is established by applying the results of the first part. The existence of a solution to the non-linear problem is shown for a large class of background magnetic fields via a fixed-point argument. 606 $aDifferential calculus & equations$2bicssc 610 $aTriebel-Lizorkin spaces 610 $aTime-periodic 610 $aMHD equations 610 $aTransference principle 610 $aTrace space 615 7$aDifferential calculus & equations 700 $aMöller$b Jens-Henning$01329470 801 0$bScCtBLL 801 1$bScCtBLL 906 $aBOOK 912 $a9910433226703321 996 $aTime-Periodic Solutions to the Equations of Magnetohydrodynamics with Background Magnetic Field$93039477 997 $aUNINA