LEADER 01683nam 2200433 450 001 9910424647303321 005 20230830164628.0 010 $a1-83968-084-9 035 $a(CKB)4100000011568899 035 $a(NjHacI)994100000011568899 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/67730 035 $a(EXLCZ)994100000011568899 100 $a20221022d2020 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aDynamic Data Assimilation $eBeating the Uncertainties /$fedited by Dinesh G. Harkut 210 $cIntechOpen$d2020 210 1$aLondon :$cIntechOpen,$d2020. 215 $a1 online resource (118 pages) $cillustrations 311 $a1-83968-083-0 320 $aIncludes bibliographical references. 330 $aData assimilation is a process of fusing data with a model for the singular purpose of estimating unknown variables. It can be used, for example, to predict the evolution of the atmosphere at a given point and time. This book examines data assimilation methods including Kalman filtering, artificial intelligence, neural networks, machine learning, and cognitive computing. 517 $aDynamic data assimilation 606 $aMathematical models 606 $aSimulation methods 610 $aApplied mathematics 615 0$aMathematical models. 615 0$aSimulation methods. 676 $a511.8 702 $aHarkut$b Dinesh G.$f1988- 801 0$bNjHacI 801 1$bNjHacl 906 $aBOOK 912 $a9910424647303321 996 $aDynamic Data Assimilation$92952332 997 $aUNINA