LEADER 01913 am 2200697 n 450 001 9910416510103321 005 20191005 010 $a2-38050-011-8 024 7 $a10.4000/books.pcjb.6240 035 $a(CKB)4100000010163714 035 $a(FrMaCLE)OB-pcjb-6240 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/47298 035 $a(PPN)243134215 035 $a(EXLCZ)994100000010163714 100 $a20200213j|||||||| ||| 0 101 0 $afre 135 $auu||||||m|||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFabriquer l?antique $eLes contrefaçons de peinture murale antique au XVIIIe siècle /$fDelphine Burlot 210 $aNaples $cPublications du Centre Jean Bérard$d2019 215 $a1 online resource (347 p.) 311 $a2-918887-15-3 606 $aHistory 606 $apeinture 606 $acollection 606 $aGrand Tour 606 $aXVIIIe siècle 606 $aAntiquité 606 $afaussaire 606 $acontrefaçon 606 $aantiquariat 606 $acollectionneur 610 $aXVIIIe siècle 610 $aantiquariat 610 $acontrefaçon 610 $apeinture 610 $acollectionneur 610 $aAntiquité 610 $aGrand Tour 610 $acollection 610 $afaussaire 615 4$aHistory 615 4$apeinture 615 4$acollection 615 4$aGrand Tour 615 4$aXVIIIe siècle 615 4$aAntiquité 615 4$afaussaire 615 4$acontrefaçon 615 4$aantiquariat 615 4$acollectionneur 700 $aBurlot$b Delphine$0479111 701 $aBaratte$b François$0343928 701 $aEristov$b Hélène$01282391 801 0$bFR-FrMaCLE 906 $aBOOK 912 $a9910416510103321 996 $aFabriquer l?antique$93018796 997 $aUNINA LEADER 01403oam 2200421 450 001 9910702565503321 005 20140825151744.0 035 $a(CKB)5470000002428522 035 $a(OCoLC)885355105 035 $a(EXLCZ)995470000002428522 100 $a20140806d2000 ua 0 101 0 $aeng 135 $aurbn||||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 00$aTransportation and warehousing, and utilities statistics 210 1$aWashington, DC :$cU.S. Dept. of Commerce, Economics and Statistics Administration U.S. Census Bureau,$d[2000] 215 $a1 online resource (6 pages) 225 1 $aFactfinder for the nation ;$vCFF-13 300 $aCaption title. 300 $aTitle from title screen (viewed Aug. 6, 2014). 300 $a"Issued July 2000." 606 $aTransportation$zUnited States$vStatistics 606 $aCommunication and traffic$zUnited States$vStatistics 606 $aPublic utilities$zUnited States$vStatistics 608 $aStatistics.$2lcgft 615 0$aTransportation 615 0$aCommunication and traffic 615 0$aPublic utilities 712 02$aUnited States.$bBureau of the Census, 801 0$bGPO 801 1$bGPO 801 2$bGPO 906 $aBOOK 912 $a9910702565503321 996 $aTransportation and warehousing, and utilities statistics$93186378 997 $aUNINA LEADER 05146nam 2201381z- 450 001 9910557509803321 005 20220111 035 $a(CKB)5400000000044458 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/76601 035 $a(oapen)doab76601 035 $a(EXLCZ)995400000000044458 100 $a20202201d2021 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aArtificial Neural Networks in Agriculture 210 $aBasel, Switzerland$cMDPI - Multidisciplinary Digital Publishing Institute$d2021 215 $a1 online resource (283 p.) 311 08$a3-0365-1580-1 311 08$a3-0365-1579-8 330 $aModern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible. 606 $aBiology, life sciences$2bicssc 606 $aResearch & information: general$2bicssc 606 $aTechnology, engineering, agriculture$2bicssc 610 $aagroecology 610 $aapparent soil electrical conductivity (ECa) 610 $aartificial neural network 610 $aartificial neural network (ANN) 610 $aartificial neural networks 610 $aautomated harvesting 610 $aaverage degree of coverage 610 $abig data 610 $aclassification 610 $aCLQ 610 $aCNN 610 $aconvolutional neural networks 610 $acorn canopy cover 610 $acorn plant density 610 $acorrelation filter 610 $acoverage unevenness coefficient 610 $acrop models 610 $acrop yield prediction 610 $acropland mapping 610 $adecision supporting systems 610 $adeep learning 610 $adeoxynivalenol 610 $adynamic model 610 $adynamic response 610 $adynamic time warping 610 $aEBK 610 $aEM38 610 $aenvironment 610 $aFaster-RCNN 610 $aferulic acid 610 $afood production 610 $aGA-BPNN 610 $aGPP-driven spectral model 610 $agrain 610 $aGrain weevil identification 610 $ahealth 610 $ahigh-resolution imagery 610 $ahigh-throughput phenotyping 610 $ahybrid feature extraction 610 $ahydroponics 610 $aimage classification 610 $aimage identification 610 $aLSTM 610 $amachine learning 610 $amagnetic susceptibility (MS) 610 $aMedjool dates 610 $amemory 610 $ametric 610 $aMLP network 610 $amodel application for sustainable agriculture 610 $amodeling 610 $aNARX neural networks 610 $aneural image analysis 610 $aneural modelling classification 610 $aneural network 610 $aneural networks 610 $anivalenol 610 $aoil palm tree 610 $aoptimization 610 $apaddy rice mapping 610 $aPhoenix dactylifera L. 610 $aplant growth 610 $aprecision agriculture 610 $apredicting 610 $arecursive feature elimination wrapper 610 $aremote sensing for agriculture 610 $arice phenology 610 $aroot zone temperature 610 $asensitivity analysis 610 $asimilarity 610 $asoil and plant nutrition 610 $asoybean 610 $atime series forecasting 610 $atransfer learning 610 $aUAV 610 $avegetation indices 610 $aweakly supervised learning 610 $aweeds 610 $awinter wheat 610 $ayield gap 610 $ayield prediction 615 7$aBiology, life sciences 615 7$aResearch & information: general 615 7$aTechnology, engineering, agriculture 700 $aKujawa$b Sebastian$4edt$01324202 702 $aNiedba?a$b Gniewko$4edt 702 $aKujawa$b Sebastian$4oth 702 $aNiedba?a$b Gniewko$4oth 906 $aBOOK 912 $a9910557509803321 996 $aArtificial Neural Networks in Agriculture$93036034 997 $aUNINA