LEADER 04048nam 22007335 450 001 9910410002803321 005 20200705020121.0 010 $a3-030-48698-2 024 7 $a10.1007/978-3-030-48698-3 035 $a(CKB)4100000011321023 035 $a(MiAaPQ)EBC6237601 035 $a(DE-He213)978-3-030-48698-3 035 $a(PPN)248594990 035 $a(EXLCZ)994100000011321023 100 $a20200625d2020 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aPolaritonic Chemistry$b[electronic resource] $eManipulating Molecular Structure Through Strong Light?Matter Coupling /$fby Javier Galego Pascual? 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (179 pages) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 311 $a3-030-48697-4 327 $aAbstract -- List of acronyms -- Introduction -- Theoretical background -- Molecular structure in electronic strong coupling -- Theory of polaritonic chemistry -- Manipulating photochemistry -- Cavity ground-state chemistry -- General conclusions and perspective -- Bibliography -- List of publications. 330 $aPolaritonic chemistry is an emergent interdisciplinary field in which the strong interaction of organic molecules with confined electromagnetic field modes is exploited in order to manipulate the chemical structure and reactions of the system. In the regime of strong light-matter coupling the interaction with the electromagnetic vacuum obliges us to redefine the concept of a molecule and consider the hybrid system as a whole. This thesis builds on the foundations of chemistry and quantum electrodynamics in order to provide a theoretical framework to describe these organic light-matter hybrids. By fully embracing the structural complexity of molecules, this theory allows us to employ long-established quantum chemistry methods to understand polaritonic chemistry. This leads to predictions of substantial structural changes in organic molecules and the possibility of significantly influencing chemical reactions both in the excited and ground states of the system. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aLasers 606 $aPhotonics 606 $aQuantum physics 606 $aQuantum optics 606 $aInorganic chemistry 606 $aOrganic chemistry 606 $aPhysical chemistry 606 $aOptics, Lasers, Photonics, Optical Devices$3https://scigraph.springernature.com/ontologies/product-market-codes/P31030 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aInorganic Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C16008 606 $aOrganic Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C19007 606 $aPhysical Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C21001 615 0$aLasers. 615 0$aPhotonics. 615 0$aQuantum physics. 615 0$aQuantum optics. 615 0$aInorganic chemistry. 615 0$aOrganic chemistry. 615 0$aPhysical chemistry. 615 14$aOptics, Lasers, Photonics, Optical Devices. 615 24$aQuantum Physics. 615 24$aQuantum Optics. 615 24$aInorganic Chemistry. 615 24$aOrganic Chemistry. 615 24$aPhysical Chemistry. 676 $a540.151 700 $aGalego Pascual?$b Javier$4aut$4http://id.loc.gov/vocabulary/relators/aut$0843578 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910410002803321 996 $aPolaritonic Chemistry$91935707 997 $aUNINA