LEADER 04708nam 22009015 450 001 9910409687103321 005 20220406120926.0 010 $a3-030-41528-7 024 7 $a10.1007/978-3-030-41528-0 035 $a(CKB)4100000011325564 035 $a(MiAaPQ)EBC6245732 035 $a(DE-He213)978-3-030-41528-0 035 $a(PPN)248596152 035 $a(EXLCZ)994100000011325564 100 $a20200630d2020 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCombined Discrete and Continual Approaches in Biological Modelling$b[electronic resource] /$fby Alexander E. Filippov, Stanislav N. Gorb 205 $a1st ed. 2020. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2020. 215 $a1 online resource (xviii, 317 pages) 225 1 $aBiologically-Inspired Systems,$x2211-0593 ;$v16 311 $a3-030-41527-9 327 $aChapter 1. Introduction -- Chapter 2. Various methods of pattern formation -- Chapter 3. Clusterization of biological structures with high aspect ratio -- Chapter 4. Contact between biological attachment devices and rough -- Chapter 5. Anisotropic friction in biological systems -- Chapter 6. Mechanical interlocking of biological fasteners -- Chapter 7. Biomechanics at the microscale -- Chapter 8. Nanoscale pattern formation in biological surfaces -- Chapter 9. Ecology and evolution. 330 $aBasic laws of nature are rather simple, but observed biological structures and their dynamic behaviors are unbelievably complicated. This book is devoted to a study of this ?strange? relationship by applying mathematical modeling to various structures and phenomena in biology, such as surface patterns, bioadhesion, locomotion, predator-prey behavior, seed dispersal, etc. and revealing a kind of self-organization in these phenomena. In spite of diversity of biological systems considered, two main questions are (1) what does self-organization in biology mean mathematically and (2) how one can apply this knowledge to generate new knowledge about behavior of particular biological system? We believe that this kind of ?biomimetics? in computer will lead to better understanding of biological phenomena and possibly towards development of technical implications based on our modeling. 410 0$aBiologically-Inspired Systems,$x2211-0593 ;$v16 606 $aBioinformatics  606 $aComputational biology  606 $aSurfaces (Physics) 606 $aInterfaces (Physical sciences) 606 $aThin films 606 $aSystem theory 606 $aZoology 606 $aPlant science 606 $aBotany 606 $aBiology?Technique 606 $aComputer Appl. in Life Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/L17004 606 $aSurface and Interface Science, Thin Films$3https://scigraph.springernature.com/ontologies/product-market-codes/P25160 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/M13090 606 $aZoology$3https://scigraph.springernature.com/ontologies/product-market-codes/L25007 606 $aPlant Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/L24000 606 $aBiological Techniques$3https://scigraph.springernature.com/ontologies/product-market-codes/L28000 606 $aModels matemàtics$2thub 606 $aBiologia$2thub 606 $aBioinformàtica$2thub 608 $aLlibres electrònics$2thub 615 0$aBioinformatics . 615 0$aComputational biology . 615 0$aSurfaces (Physics). 615 0$aInterfaces (Physical sciences). 615 0$aThin films. 615 0$aSystem theory. 615 0$aZoology. 615 0$aPlant science. 615 0$aBotany. 615 0$aBiology?Technique. 615 14$aComputer Appl. in Life Sciences. 615 24$aSurface and Interface Science, Thin Films. 615 24$aComplex Systems. 615 24$aZoology. 615 24$aPlant Sciences. 615 24$aBiological Techniques. 615 7$aModels matemàtics 615 7$aBiologia 615 7$aBioinformàtica 676 $a574.0184 700 $aFilippov$b Alexander E$4aut$4http://id.loc.gov/vocabulary/relators/aut$01057952 702 $aGorb$b Stanislav N$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910409687103321 996 $aCombined Discrete and Continual Approaches in Biological Modelling$92495847 997 $aUNINA