LEADER 01097cam0 2200289 450 001 9910222059803321 005 20211021083925.0 010 $a8478906703 100 $a20171031 1994---- 101 0 $aspa 102 $aES 105 $a 001yy 200 1 $aCátalogo de obras impresas en el siglo XVI de la Biblioteca Serrano Morales del Ayuntamiento de Valencia$fCarmen Gómez-Senent Martínez 210 $a[Valencia, Spain]$cAyuntamiento Servicio de Pubblicaciones$d1994 215 $a585 p.$cill.$d24 cm 606 $aEarly printed books Bibliography 16th century Catalogs 610 0 $aTesti a stampa - Bibliografia$aCataloghi - sec. 16. 676 $a091.0946 702 1$aGómez-Senent Martínez$bCarmen 710 02$aBiblioteca Municipal di Valencia$bCatalogo$0747734 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910222059803321 952 $a091.0946 BIB VALENCIA 3$bBRAU 2017/360$fFLFBC 959 $aFLFBC 996 $aCátalogo de obras impresas en el siglo XVI de la Biblioteca Serrano Morales del Ayuntamiento de Valencia$91494287 997 $aUNINA LEADER 05611nam 2201333z- 450 001 9910404081203321 005 20210211 010 $a3-03928-641-2 035 $a(CKB)4100000011302326 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/40339 035 $a(oapen)doab40339 035 $a(EXLCZ)994100000011302326 100 $a20202102d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aAdvances in Polyhydroxyalkanoate (PHA) Production, Volume 2 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (202 p.) 311 08$a3-03928-640-4 330 $aNowadays, we are witnessing highly dynamic research activities related to the intriguing field of biodegradable materials with plastic-like properties. These activities are stimulated by the strengthened public awareness of prevailing ecological issues connected to growing piles of plastic waste and increasing greenhouse gas emissions; this goes hand-in-hand with the ongoing depletion of fossil feedstocks, which are traditionally used to produce full carbon backbone polymers. Polyhydroxyalkanoate (PHA) biopolyesters, a family of plastic-like materials with versatile material properties, are increasing considered to be a future-oriented solution for diminishing these concerns. PHA production is based on renewable resources and occurs in a bio-mediated fashion through the action of living organisms. If accomplished in an optimized way, PHA production and the entire PHA lifecycle are embedded into nature´s closed cycles of carbon. Sustainable and efficient PHA production requires understanding and improvement of all the individual process steps. Holistic improvement of PHA production, applicable on an industrially relevant scale, calls for, inter alia, consolidated knowledge about the enzymatic and genetic particularities of PHA-accumulating organisms, an in-depth understanding of the kinetics of the bioprocess, the selection of appropriate inexpensive fermentation feedstocks, tailoring of PHA composition at the level of its monomeric constituents, optimized biotechnological engineering, and novel strategies for PHA recovery from biomass characterized by low energy and chemical requirements. This Special Issue represents a comprehensive compilation of articles in which these individual aspects have been addressed by globally recognized experts. 517 $aAdvances in Polyhydroxyalkanoate 606 $aBiotechnology$2bicssc 610 $aactivated charcoal 610 $aadditive manufacturing 610 $aalginate 610 $aArchaea 610 $abioeconomy 610 $abiomaterials 610 $abiomedical application 610 $abiomedicine 610 $abiopolyester 610 $abiopolymer 610 $abioprocess design 610 $abioreactor 610 $abiosurfactants 610 $ablends 610 $abubble column bioreactor 610 $acarbon dioxide 610 $acomputer-aided wet-spinning 610 $aCOMSOL 610 $aCupriavidus malaysiensis 610 $aCupriavidus necator 610 $acyanobacteria 610 $adelivery system 610 $adownstream processing 610 $aelectrospinning 610 $aextremophiles 610 $afed-batch 610 $afed-batch fermentation 610 $afeedstocks 610 $afilm 610 $afused deposition modeling 610 $agaseous substrates 610 $ahaloarchaea 610 $aHaloferax 610 $ahalophiles 610 $ahigh cell density cultivation 610 $ahigh-cell-density fed-batch 610 $ahydrolysate detoxification 610 $ain-line 610 $ain-line monitoring 610 $amedium-chain-length polyhydroxyalkanoate (mcl-PHA) 610 $amicroaerophilic 610 $amicroorganism 610 $anon-Newtonian fluid 610 $aon-line 610 $aoxygen transfer 610 $aP(3HB-co-3HV-co-4HB) 610 $aPAT 610 $aPDW 610 $aPHA 610 $aPHA composition 610 $aPHA processing 610 $aPHB 610 $aphenolic compounds 610 $aphoton density wave spectroscopy 610 $aplant oil 610 $apoly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHVB) 610 $apoly(3-hydroxybutyrate-co-4-hydroxybutyrate) 610 $aPoly(3-hydroxybutyrate) 610 $apolyhydroxyalkanoate 610 $apolyhydroxyalkanoate (PHA) 610 $apolyhydroxyalkanoates 610 $apolyhydroxyalkanoates processing 610 $apolyhydroxybutyrate 610 $aprocess analytical technologies 610 $aprocess engineering 610 $aprocess simulation 610 $aproductivity 610 $aPseudomonas 610 $aPseudomonas putida 610 $aPseudomonas sp. 610 $aRalstonia eutropha 610 $arheology 610 $asalinity 610 $aselective laser sintering 610 $asimulation 610 $atequila bagasse 610 $aterpolyester 610 $aterpolymer 610 $atissue engineering 610 $aupstream processing 610 $aviscosity 610 $awaste streams 610 $awound healing 615 7$aBiotechnology 700 $aKoller$b Martin$4auth$01327943 906 $aBOOK 912 $a9910404081203321 996 $aAdvances in Polyhydroxyalkanoate (PHA) Production, Volume 2$93038319 997 $aUNINA