LEADER 04311nam 2201105z- 450 001 9910404077603321 005 20210212 010 $a3-03928-731-1 035 $a(CKB)4100000011302362 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/58591 035 $a(oapen)doab58591 035 $a(EXLCZ)994100000011302362 100 $a20202102d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aThe Role of MicroRNAs in Plants 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (174 p.) 311 08$a3-03928-730-3 330 $aDiscovered in plants at the turn of the century, microRNAs (miRNAs) have been found to be fundamental to many aspects of plant biology. These small (20-24 nt) regulatory RNAs are derived via processing from longer imperfect double-stranded RNAs. They are then incorporated into silencing complexes, which they guide to (m)RNAs of high sequence complementarity, resulting in gene silencing outcomes, either via RNA degradation and/or translational inhibition. Some miRNAs are ancient, being present in all species of land plants and controlling fundamental processes such as phase change, organ polarity, flowering, and leaf and root development. However, there are many more miRNAs that are much less conserved and with less understood functions. This Special Issue contains seven research papers that span from understanding the function of a single miRNA family to examining how the miRNA profiles alter during abiotic stress or nutrient deficiency. The possibility of circular RNAs in plants acting as miRNA decoys to inhibit miRNA function is investigated, as was the hierarchical roles of miRNA biogenesis factors in the maintenance of phosphate homeostasis. Three reviews cover the potential of miRNAs for agronomic improvement of maize, the role of miRNA-triggered secondary small RNAs in plants, and the potential function of an ancient plant miRNA. 606 $aBiology, life sciences$2bicssc 610 $aabiotic stress 610 $aagronomic traits 610 $aaleurone 610 $aArabidopsis thaliana 610 $aargonaute 610 $acallose 610 $acircRNA 610 $acircular RNAs 610 $aColorado potato beetle 610 $acopper deficiency 610 $acopper protein 610 $acrop improvement 610 $aCu-microRNA 610 $adehydration 610 $adesiccation 610 $adevelopment 610 $aDOUBLE-STRANDED RNA BINDING (DRB) proteins DRB1 610 $aDRB2 610 $aDRB4 610 $adrought 610 $adrought stress 610 $aflowering 610 $aGAMYB 610 $aheat stress 610 $aimmunoprecipitation 610 $amaize (Zea mays L.) 610 $amicroRNA 610 $amicroRNA (miRNA) 610 $amicroRNAs 610 $amicroRNAs (miRNAs) 610 $amiR159 610 $amiR171 610 $amiR399 610 $amiR399-directed PHO2 expression regulation 610 $amiRNA 610 $amiRNA target gene expression 610 $amiRNAs 610 $aMYB transcription factors 610 $anon-coding RNA 610 $anutrient availability 610 $aP5CS 610 $aphasiRNA 610 $aphosphate (PO4) stress 610 $aPHOSPHATE2 (PHO2) 610 $aphosphorous (P) 610 $aphotosynthesis 610 $aplant 610 $aplastocyanin 610 $apollen 610 $apost-transcriptional gene silencing 610 $aprogrammed cell death 610 $aproline 610 $aputrescine 610 $aresurrection plants 610 $aRT-qPCR 610 $asalt stress 610 $asecondary siRNA 610 $aSolanum lycopersicum 610 $aSTTM 610 $atapetum 610 $atarget mimicry 610 $atasiRNA 610 $atomato 610 $aTripogon loliiformis 610 $avegetative growth 615 7$aBiology, life sciences 700 $aMillar$b Anthony$4auth$01291919 906 $aBOOK 912 $a9910404077603321 996 $aThe Role of MicroRNAs in Plants$93022078 997 $aUNINA LEADER 01787nam 2200397z- 450 001 9910346700503321 005 20210211 010 $a1000035547 035 $a(CKB)4920000000094689 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/44651 035 $a(oapen)doab44651 035 $a(EXLCZ)994920000000094689 100 $a20202102d2013 |y 0 101 0 $ager 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aDeformation Behavior of Thin Metallic Wires under Tensile and Torsional Loadings 210 $cKIT Scientific Publishing$d2013 215 $a1 online resource (V, 158 p. p.) 225 1 $aSchriftenreihe des Instituts für Angewandte Materialien, Karlsruher Institut für Technologie 311 08$a3-7315-0049-3 330 $aSize effects are widely observed in the mechanics of materials at the micron scale. However, the underlying deformation mechanisms remain ambiguous, particularly in the presence of strain gradients. In this work, combined microstructural investigations and mechanical tests (tension and torsion) were conducted on polycrystalline gold micro wires to determine the influences of specimen size, grain size, strain rate and loading type on the deformation behavior of the wires. 606 $aTechnology: general issues$2bicssc 610 $aHall-Petch effect 610 $amicro-tension 610 $amicro-torsion 610 $asize effects 610 $astrain gradients 615 7$aTechnology: general issues 700 $aChen$b Ying$4auth$0683005 906 $aBOOK 912 $a9910346700503321 996 $aDeformation Behavior of Thin Metallic Wires under Tensile and Torsional Loadings$93021895 997 $aUNINA