LEADER 03910nam 2200961z- 450 001 9910404075603321 005 20210212 010 $a3-03928-709-5 035 $a(CKB)4100000011302382 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/60381 035 $a(oapen)doab60381 035 $a(EXLCZ)994100000011302382 100 $a20202102d2020 |y 0 101 0 $aeng 135 $aurmn|---annan 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aSymmetry in Classical and Fuzzy Algebraic Hypercompositional Structures 210 $cMDPI - Multidisciplinary Digital Publishing Institute$d2020 215 $a1 online resource (208 p.) 311 08$a3-03928-708-7 330 $aThis book is a collection of 12 innovative research papers in the field of hypercompositional algebra, 7 of them being more theoretically oriented, with the other 5 presenting strong applicative aspects in engineering, control theory, artificial intelligence, and graph theory. Hypercompositional algebra is now a well-established branch of abstract algebra dealing with structures endowed with multi-valued operations, also called hyperoperations, having a set as the result of the interrelation between two elements of the support set. The theoretical papers in this book are principally related to three main topics: (semi)hypergroups, hyperfields, and BCK-algebra. Heidari and Cristea present a natural generalization of breakable semigroups, defining the breakable semihypergroups where every non-empty subset is a subsemihypergroup. Using the fundamental relation ? on a hypergroup, some new properties of the 610 $a(hyper)homography 610 $a1-hypergroup 610 $aapplication 610 $abreakable semigroup 610 $aclustering protocols 610 $aedge regular 610 $aego networks 610 $afunctions on multiset 610 $afundamental equivalence relation 610 $afundamental relation 610 $afuzzy multi-Hv-ideal 610 $afuzzy multiset 610 $agranular computing 610 $aheight 610 $aHv-ideal 610 $aHv-ring 610 $aHv-structures 610 $ahyperfield 610 $ahypergroup 610 $ahyperideal 610 $ahyperring 610 $aintuitionistic fuzzy soft hyper BCK ideal 610 $aintuitionistic fuzzy soft s-weak hyper BCK-ideal 610 $aintuitionistic fuzzy soft strong hyper BCK-ideal 610 $aintuitionistic fuzzy soft weak hyper BCK ideal 610 $ainvertible subhypergroup 610 $alevel hypergraphs 610 $alinear differential operator 610 $alower approximation 610 $alower BCK-semilattice 610 $am-polar fuzzy equivalence relation 610 $am-polar fuzzy hypergraphs 610 $aminimal prime decomposition 610 $aminimal prime factor 610 $amultiset 610 $amultisets 610 $aordered group 610 $aperfect edge regular 610 $aq-rung picture fuzzy graphs 610 $aq-rung picture fuzzy line graphs 610 $aquasi-automaton 610 $aquasi-multiautomaton 610 $arelative annihilator 610 $arough set 610 $aselection operation 610 $asemi-prime closure operation 610 $asemi-symmetry 610 $asemihypergroup 610 $asingle-power cyclic hypergroup 610 $asquare q-rung picture fuzzy graphs 610 $asubmultiset 610 $atime-varying artificial neuron 610 $atransposition hypergroup 610 $aupper approximation 610 $aUWSN 700 $aCristea$b Irina$4auth$0739796 906 $aBOOK 912 $a9910404075603321 996 $aSymmetry in Classical and Fuzzy Algebraic Hypercompositional Structures$93024326 997 $aUNINA